Organizations of all sizes are shifting their IT infrastructures to the cloud because of its cost efficiency and convenience. Because of the on-demand nature of the Infrastructure as a Service (IaaS) clouds, hundreds of thousands of virtual machines (VMs) may be deployed and terminated in a single large cloud data center each day. In this paper, we propose a content-based scheduling algorithm for the placement of VMs in data centers. We take advantage of the fact that it is possible to find identical disk blocks in different VM disk images with similar operating systems by scheduling VMs with high content similarity on the same hosts. That allows us to reduce the amount of data transferred when deploying a VM on a destination host. In this paper, we first present our study of content similarity between different VMs, based on a large set of VMs with different operating systems that represent the majority of popular operating systems in use today. Our analysis shows that content similarity between VMs with the same operating system and close version numbers (e.g., Ubuntu 12.04 vs. Ubuntu 11.10) can be as high as 60%. We also show that there is close to zero content similarity between VMs with different operating systems. Second, based on the above results, we designed a content-based scheduling algorithm that lowers the network traffic associated with transfer of VM disk images inside data centers. Our experimental results show that the amount of data transfer associated with deployment of VMs and transfer of virtual disk images can be lowered by more than 70%, resulting in significant savings in data center network utilization and congestion.
As the use of cloud computing resources grows in academic research and industry, so does the likelihood of failures that catastrophically affect the applications being run on the cloud. For that reason, cloud service providers as well as cloud applications need to expect failures and shield their services accordingly. We propose a new model called Failure Scenario as a Service (FSaaS). FSaaS will be utilized across the cloud for testing the resilience of cloud applications. In an effort to provide both Hadoop service and application vendors with the means to test their applications against the risk of massive failure, we focus our efforts on the Hadoop platform. We have generated a series of failure scenarios for certain types of jobs. Customers will be able to choose specific scenarios based on their jobs to evaluate their systems.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.