We have found that the hybrid organic-inorganic perovskite-like formate Mn(HCOO)(3)[(CH(3))(2)NH(2)] shows a dielectric transition around 190 K. According to single crystal X-ray diffraction, the compound shows rhombohedral symmetry at room temperature and monoclinic symmetry at low temperature (100 K), and the main difference between both structures is that the (CH(3))(2)NH(2)(+) (DMA) cations are disordered in the high temperature phase but cooperatively ordered in the low temperature one. The vibrational spectra of this compound reveal that significant changes take place in the vibrations ascribed to the DMA cation (changes in the frequency of certain vibrations, splitting of particular vibrations, and changes in the intensities), while no significant changes have been observed in those attributed to the formate anion. On the basis of all this information, we attribute the origin of the dielectric transition to the dynamics of the DMA cations: above 190 K these cations can rotate inside the cubooctahedral cavity created by the [Mn(HCOO)(3)](-) framework, while for lower temperatures such rotation gets frozen, and their cooperative arrangement inside the cavities give rise to the observed dielectric transition.
We present the first example of magnetic ordering-induced multiferroic behavior in a metal-organic framework magnet. This compound is [CH3NH3][Co(HCOO)3] with a perovskite-like structure. The A-site [CH3NH3](+) cation strongly distorts the framework, allowing anisotropic magnetic and electric behavior and coupling between them to occur. This material is a spin canted antiferromagnet below 15.9 K with a weak ferromagnetic component attributable to Dzyaloshinskii-Moriya (DM) interactions and experiences a discontinuous hysteretic magnetic-field-induced switching along [010] and a more continuous hysteresis along [101]. Coupling between the magnetic and electric order is resolved when the field is applied along this [101]: a spin rearrangement occurs at a critical magnetic field in the ac plane that induces a change in the electric polarization along [101] and [10-1]. The electric polarization exhibits an unusual memory effect, as it remembers the direction of the previous two magnetic-field pulses applied. The data are consistent with an inverse-DM mechanism for multiferroic behavior.
We report that the hybrid organic-inorganic compound [(CH3)2NH2][Mg(HCOO)3] shows a marked dielectric transition around Tt∼ 270 K, associated to a structural phase transition from SG R3[combining macron]c (centrosymmetric) to Cc (non-centrosymmetric). This is the highest Tt reported so far for a perovskite-like formate that is thus a promising candidate to display electric order very close to room temperature.
The fast growing family of organic–inorganic hybrid compounds has recently been attracting increased attention owing to the remarkable functional properties (magnetic, multiferroic, optoelectronic, photovoltaic) displayed by some of its members. Here we show that these compounds can also have great potential in the until now unexplored field of solid-state cooling by presenting giant barocaloric effects near room temperature already under easily accessible pressures in the hybrid perovskite [TPrA][Mn(dca)3] (TPrA: tetrapropylammonium, dca: dicyanamide). Moreover, we propose that this will not be an isolated example for such an extraordinary behaviour as many other organic–inorganic hybrids (metal-organic frameworks and coordination polymers) exhibit the basic ingredients to display large caloric effects which can be very sensitive to pressure and other external stimuli. These findings open up new horizons and great opportunities for both organic–inorganic hybrids and for solid-state cooling technologies.
A multistimuli response to temperature and pressure is found in the hybrid inorganic-organic perovskite-like [TPrA][Mn(dca)3] compound, which is related to a first-order structural phase transition near room temperature, Tt ≈ 330 K. This phase transition involves a transformation from room temperature polymorph I, with the noncentrosymmetric space group P4̅21c, to the high temperature polymorph II, with the centrosymmetric space group I4/mcm, and it implies ionic displacements, order-disorder phenomena, and a large and anisotropic thermal expansion (specially along the c-axis). As a consequence, [TPrA][Mn(dca)3] exhibits a dielectric anomaly, associated with the change from a cooperative to a noncooperative electric behavior (antiferroelectric (AFE)-paraelectric (PE) transition). The former implies an AFE distribution of electric dipoles in polymorph I, related to the described off-shift of the apolar TPrA cations and the order-disorder of the polar dca ligands mechanisms, that are different from those reported, up to now, for others perovskite-type hybrid compounds. Such cooperative electric order, below Tt ≈ 330 K, coexisting with long-range antiferromagnetic ordering below T = 2.1 K render the [TPrA][Mn(dca)3] a new type-I multiferroic material. In addition, the obtained experimental results reveal that this compound is also a multistimuli-responsive material, with a very large sensitivity toward temperature and applied external pressure, δTt/δP ≈ 24 K kbar(-1), even for small values of pressure (P < 2 kbar). Therefore, this material opens up a potential interest for future technological applications, such as temperature/pressure sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.