Light textured soils especially; sandy loam ones are the most dominant in the new reclaimed areas in Egypt. The main production constraints of this type of soil are low in organic carbon, porosity, stable aggregates, water retention capacity, and biological activities. Agriculture soil should have not only a good structure but also a good structure which can persist for a long time (e.g., a structure of high quality and stability). Soil aggregates are structural units of soil, which create complex pore systems controlling gas and water storage and fluxes in soil. Formation and stability of natural soil aggregates are affected by dozens of different factors and their individual effects are hardly distinguishable. Therefore, to observe more clear the mechanisms governing their water and mechanical stability, it was found necessary to study soil aggregates. In that sence, some studies showed encouraging findings of increasing soil stable aggregates due to using different soil conditioners. The objective of this work is to assess some extracellular polysaccharides biopolymers, i.e., Dextran, Alginate, Xanthan, Pullulan, and Curdlan, which were produced in our laboratory under the most suitable production conditions, to test their effects on the physical proprerties of soil taken from Toshka region at Aswan Governorate of Egypt. Data showed that soil porosity and MWDwet values have significant differences between all treatments and control under un-leaching processes. On the Other hand, in leaching processes, significant differences between all treatments and control were observed except in some treatments that using lower ratios of Pullulan and Curdlan biopolymers (i. e. 0.4, 0.6 and 0.8%). Generally, the beneficial order of enhancement of aggregate stability was obtained with Dextran, followed by Alginate, Xanthan, Pullulan, and Curdlan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.