Improving dissolution properties of active pharmaceutical ingredients (APIs) is a critical step in drug development with the increasing occurrence of sparingly soluble APIs. Cocrystal formation is one of the methods to alter the physicochemical properties of APIs, but its dissolution behavior in biorelevant media has been scrutinized only in recent years. We investigated the combined strategy of cocrystallization and eutectic formation in this regard and utilized the cocrystal model system of naproxen and three pyridinecarboxamide isomers. Binary melting diagrams were constructed to discover the eutectic compositions of the three cocrystals with excess amounts of pyridinecarboxamides. The melt–crystallized eutectics and cocrystals were compared in their dissolution behaviors with respect to neat naproxen. The eutectics enhanced the early dissolution rates of the cocrystals in both the absence and presence of biologically relevant bile salt and phospholipid components, whereas the cocrystal dissolution was expedited and delayed, respectively. The combined strategy in the present study will be advantageous in maximizing the utility of the pharmaceutical cocrystals.
Eutectic formation with additives is one of the established methods to improve the dissolution behaviors of active pharmaceutic ingredients (APIs). The improvement is mainly due to the increase in the surface area for dissolution, which originates from the finely divided micro-domains generated through the phase separation of the miscible liquid components upon solidification. The present study is to identify eutectic-forming additives for naproxen (NPX), a class II API of the biopharmaceutical classification system. A particular aim was to develop a eutectic mixture with NPX at least over 20 wt%, a minimum to be practical for oral delivery. Screening based on the proximity of the solubility parameter values identified dicarboxylic acids (succinic acid, glutaric acid, and suberic acid) as desirable additives for NPX. Binary melting diagrams were constructed to confirm the eutectic compositions, and the eutectic mixture with suberic acid (NPX 55 wt%) was further investigated. The dissolution (at pH 5.0) of the melt crystallized eutectics was enhanced compared to the simple physical mixture of the same compositions and neat NPX, which was attributed to the microscopically observed lamellar structures. The current study should support the systematic investigations of API eutectic mixtures by selecting appropriate eutectic-forming additives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.