We generalize two results about subgroups of multiplicative group of finite field of prime order. In particular, the lower bound on the cardinality of the set of values of polynomial P (x, y) is obtained under the certain conditions, if variables x and y belong to a subgroup G of the multiplicative group of the filed of residues. Also the paper contains a proof of the result that states that if a subgroup G can be presented as a set of values of the polynomial P (x, y), where x ∈ A, and y ∈ B then the cardinalities of sets A and B are close (in order) to a square root of the cardinality of subgroup G.
Мы обобщаем два результата работ [1], [2]
о суммах подмножеств $\mathbb{F}_p$ на более общую ситуацию,
когда вместо суммы $x+y$ рассматрив ается величина $P(x,y)$,
где $P$ - многочлен достаточно общего вида. В частности,
получена нижняя оценка мощности множества значений
многочлена $P(x,y)$, где переменные $x$ и $y$ принадлежат
подгруппе $G$ мультипликативной группа поля $\mathbb{F}_p$.
Также мы доказываем, что если подгруппа $G$ может быть представлена
как множество значений многочлена $P(x,y)$ при $x\in A$, $y\in B$,
то мощности множеств $A$ и $B$ по порядку близки к $\sqrt{|G|}$ .
Библиография: 7 названий.
This work is about the generalization of sum-product problem. The general principle of it was formulated in the Erdos-Szemeredi’s hypothesis. Instead of the Minkowski sum in this hypothesis, the set of values f(x,y) of a homogeneous polynomial f lin two variables, where x and y belong to subgroup G of is considered. The lower bound on the cardinality of such set is obtained. This topic has an applied value in the theory of information and dynamics in calculating the probabilities of events, as well as in various methods of encoding and decoding information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.