Aquatic biomonitoring has become an essential task in Europe and many other regions as a consequence of strong anthropogenic pressures affecting the health of lakes, rivers, oceans and groundwater. A typical assessment of the environmental quality status, such as it is required by European but also North American and other legislation, relies on matching the composition of assemblages of organisms identified using morphological criteria present in aquatic ecosystems to those expected in the absence of anthropogenic pressures. Through decade-long and difficult intercalibration exercises among networks of regulators and scientists in European countries, a pragmatic biomonitoring approach was developed and adopted, which now produces invaluable information. Nonetheless, this approach is based on several hundred different protocols, making Next-Generation Biomonitoring of Aquatic Ecosystems
The protection, preservation and restoration of aquatic ecosystems and their functions are of global importance. For European states it became legally binding mainly through the EU-Water Framework Directive (WFD). In order to assess the ecological status of a given water body, aquatic biodiversity data are obtained and compared to a reference water body. The quantified mismatch obtained determines the extent of potential management actions. The current approach to biodiversity assessment is based on morpho-taxonomy. This approach has many drawbacks such as being time consuming, limited in temporal and spatial resolution, and error-prone due to the varying individual taxonomic expertise of the analysts. Novel genomic tools can overcome many of the aforementioned problems and could complement or even replace traditional bioassessment. Yet, a plethora of approaches are independently developed in different institutions, thereby hampering any concerted routine application. The goal of this Action is to nucleate a group of researchers across disciplines with the task to identify gold-standard genomic tools and novel ecogenomic indices for routine application in biodiversity assessments of European fresh-and marine water bodies. Furthermore, DNAqua-Net will provide a platform for training of the next generation of European researchers preparing them for the new technologies. Jointly with water managers, politicians, and other stakeholders, the group will develop a
We conducted a microcosm experiment with monocultures and all possible combinations of four aquatic hyphomycete species, Articulospora tetracladia, Flagellospora curta, Geniculospora grandis and Heliscus submersus, to examine the potential effects of species richness on three functional aspects: leaf litter decomposition (leaf mass loss), fungal production (ergosterol buildup) and reproductive effort (released spores). Both species richness and identity significantly affected fungal biomass and conidial production (number and biomass of released spores), whereas only species identity had a significant effect on leaf mass loss. In mixed cultures, all measures of fungal functions were greater than expected from the weighted performances of participating species in monoculture. Mixed cultures outperformed the most active monoculture for biomass accumulation but not for leaf mass loss and conidial production. The three examined aspects of aquatic hyphomycete activity tended to increase with species richness, and a complementary effect was unequivocally demonstrated for fungal biomass. Our results also suggest that specific traits of certain species may have a greater influence on ecosystem functioning than species number.
100Effective identification of species using short DNA fragments (DNA barcoding and DNA 101 metabarcoding) requires reliable sequence reference libraries of known taxa. Both 102 taxonomically comprehensive coverage and content quality are important for sufficient 103 accuracy. For aquatic ecosystems in Europe, reliable barcode reference libraries are 104 particularly important if molecular identification tools are to be implemented in biomonitoring 105 and reports in the context of the EU Water Framework Directive (WFD) and the Marine 106Strategy Framework Directive (MSFD). We analysed gaps in the two most important 107 reference databases, Barcode of Life Data Systems (BOLD) and NCBI GenBank, with a 108 focus on the taxa most frequently used in WFD and MSFD. Our analyses show that 109 coverage varies strongly among taxonomic groups, and among geographic regions. In 110 general, groups that were actively targeted in barcode projects (e.g. fish, true bugs, 111 caddisflies and vascular plants) are well represented in the barcode libraries, while others 112 have fewer records (e.g. marine molluscs, ascidians, and freshwater diatoms). We also 113 found that species monitored in several countries often are represented by barcodes in 114 reference libraries, while species monitored in a single country frequently lack sequence 115 records. A large proportion of species (up to 50%) in several taxonomic groups are only 116represented by private data in BOLD. Our results have implications for the future strategy to 117 fill existing gaps in barcode libraries, especially if DNA metabarcoding is to be used in the 118 monitoring of European aquatic biota under the WFD and MSFD. For example, missing 119 species relevant to monitoring in multiple countries should be prioritized. We also discuss 120 why a strategy for quality control and quality assurance of barcode reference libraries is 121 needed and recommend future steps to ensure full utilization of metabarcoding in aquatic 122 biomonitoring. 123 124
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.