Plants are sessile photo-autotrophic organisms continuously exposed to a variety of environmental stresses. Monitoring the sugar level and energy status is essential, since this knowledge allows the integration of external and internal cues required for plant physiological and developmental plasticity. Most abiotic stresses induce severe metabolic alterations and entail a great energy cost, restricting plant growth and producing important crop losses. Therefore, balancing energy requirements with supplies is a major challenge for plants under unfavorable conditions. The conserved kinases target of rapamycin (TOR) and sucrose-non-fermenting-related protein kinase-1 (SnRK1) play central roles during plant growth and development, and in response to environmental stresses; these kinases affect cellular processes and metabolic reprogramming, which has physiological and phenotypic consequences. The "yin-yang" model postulates that TOR and SnRK1 act in opposite ways in the regulation of metabolic-driven processes. In this review, we describe and discuss the current knowledge about the complex and intricate regulation of TOR and SnRK1 under abiotic stresses. We especially focus on the physiological perspective that, under certain circumstances during the plant stress response, the TOR and SnRK1 kinases could be modulated differently from what is postulated by the "yin-yang" concept.
The symbiotic interaction between soybean and nitrogen-fixing rhizobia can lead to plant growth promotion and induced systemic responses. Symbiotic interactions may increase tolerance/resistance to abiotic/biotic stress conditions, but are also sensitive to environmental conditions. Soybean mosaic virus (SMV), which is transmitted by seed and aphids, severely affects crop yields in many areas of the world, consequently virus infection may precede rhizobium infection or vice versa in the field. With the hypothesis that sequence of interaction is a key determinant of the resulting responses; growth, primary metabolism and defence responses were evaluated in different interaction sequences. Results showed that vegetative growth was promoted by Bradyrhizobium japonicum (Bj) inoculation and drastically impaired by SMV infection. The negative effect of SMV single infection on soybean growth parameters was correlated with photosynthesis decrease, sugar accumulation, oxidative damage, and increases in salicylic acid levels. Bj inoculation partially reversed virus-induced symptoms, mainly at Bj-SMV sequence. However, this symptom attenuation did not correlate with less virus accumulation. Nodulation was negatively affected by SMV, particularly when virus infection was previous to Bj inoculation (SMV-Bj). Defence related hormones (salicylic acid (SA)/jasmonic acid (JA)) and the expression of defence-related genes were dependent on the sequence of tripartite interaction. The present study showed that the sequence of the tripartite interaction among soybean, Bj and SMV determinates the tolerance/susceptibility to SMV infection, through changes in the defence mechanism and metabolic alteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.