Maternal provisioning is particularly important in invertebrates with abbreviated development because large energy reserves must be provided for the developing embryo. In this context, the objective of the present study was to analyze in an aquatic invertebrate with direct development the effect of temperature on female biochemical composition and reserve allocation to maturing ovaries, which determine egg quality. A decapod crustacean, the freshwater shrimp Neocaridina davidi, was used as experimental model. Newly hatched juveniles were exposed to 28 °C or 33 °C. Females showed mature ovaries and spawned at 28 °C (control ovigerous females), but no ovigerous female was found at 33 °C. After a 200-day period, half of the females at 33 °C were transferred to 28 °C, where they rapidly showed mature ovaries and spawned (transferred ovigerous females). Ovigerous females and females that did not spawn at 28 °C (control non-ovigerous females) and at 33 °C (high-temperature non-ovigerous females) were sacrificed to determine their biochemical composition. The number, volume, weight, and biochemical composition of the eggs from transferred and control ovigerous females were also analyzed as indicators of their quality. Female biochemical composition was not influenced by temperature, because control and high-temperature non-ovigerous females had similar lipid, protein, and glycogen contents. However, ovarian maturation and spawning were inhibited at 33 °C, which indicates a negative effect of this temperature on nutrient transfer to the oocytes. This effect was rapidly reversed after females were moved to 28 °C; the eggs from control and transferred ovigerous females were of similar quality, except for a lower protein content in the latter. The present results provide valuable information on reserve allocation to reproduction under thermal stress.
Submerged macrophytes play a key role in maintaining clear vegetated states in shallow lakes, but their role on methane (CH4) dynamics is less explored. They might enhance methanogenesis by providing organic matter but they can also supply oxygen to the sediments increasing methanotrophy. They may also affect gas exchange by diminishing wind turbulence in the water column. We previously measured seasonal CO2 and CH4 partial pressure (pCO2 and pCH4) and diffusive fluxes from two clear vegetated and two turbid algal shallow lakes of the Pampean Plain, Argentina, and we reported that clear lakes had higher mean annual pCH4 despite states having similar mean annual CH4 diffusive flux. In this study we explore the contribution of physical and biological factors regulating surface pCH4. Mean annual CH4 diffusive fluxes and CH4 fraction of oxidation (Fox) were similar between states, implying a comparable mean annual CH4 input. kCH4 was significantly higher than kCO2, suggesting occurrence of CH4 microbubbles, yet kCH4 was higher in turbid lakes than in clear lakes, implying a higher microbubble formation in turbid lakes. Furthermore, in turbid lakes there were positive relationships between k and wind speed, and between k and pCH4, yet in clear lakes these relations were absent. Results suggest that submerged vegetation suppresses wind induced turbulence in clear vegetated lakes, decoupling kCH4 from wind and reducing microbubble formation, therefore augmenting pCH4 in their surface waters. Overall, physical rather than biological factors appear to control the observed differences in pCH4 between states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.