We summarize direct and indirect effects on fitness components of animal color pattern and present a synthesis of theories concerning the ecological and evolutionary dynamics of chromatic multiple niche polymorphisms. Previous endeavors have aimed primarily at identifying conditions that promote the evolution and maintenance of polymorphisms. We consider in a conceptual model also the reciprocal influence of color polymorphism on population processes and propose that polymorphism entails selective advantages that may promote the ecological success of polymorphic species. The model begins with an evolutionary branching event from mono- to polymorphic condition that, under the influence of correlational selection, is predicted to promote the evolution of physical integration of coloration and other traits (cf. multi-trait coevolution and complex phenotypes). We propose that the coexistence within a population of alternative ecomorphs with coadapted gene complexes promotes utilization of diverse environmental resources, population stability and persistence, colonization success, and range expansions, and enhances the evolutionary potential and speciation. Conversely, we predict polymorphic populations to be less vulnerable to environmental change and at lower risk of range contractions and extinctions compared with monomorphic populations. We offer brief suggestions as to how these falsifiable predictions may be tested.
Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals.
Studies of whether disturbance events are associated with the changing genetic compositions of natural populations may provide insights into the importance of local selection events in maintaining diversity, and might inform plans for the conservation and protection of that diversity. We examined the dynamics of a colour pattern polymorphism in a natural population of pygmy grasshoppers Tetrix subulata (Orthoptera: Tetrigidae) inhabiting a previously burnt clear-cut area. Data on morph frequencies for wild-caught and captive-reared individuals indicated that the initial dominance of black phenotypes following the fire event was followed by an increased diversity of the polymorphism. This was manifested as the appearance of a novel morph, a decreased incidence of the black morph, and a more even distribution of individuals across alternative morphs following the recurrence of vegetation. We also found that the colour patterns of captive-reared individuals resembled those of their parents and that the degree of within-clutch diversity increased between generations. Our comparisons of morph frequencies across generations and between environments within generations point to a genetic determination of colour pattern, and indicate that the polymorphism is influenced more strongly by selection than by plasticity or migration.
Environmental changes currently pose severe threats to biodiversity, and reintroductions and translocations are increasingly used to protect declining populations and species from extinction. Theory predicts that establishment success should be higher for more variable groups of dissimilar individuals. To test this 'diversity promotes establishment' hypothesis, we introduced colour polymorphic pygmy grasshoppers (Tetrix subulata) to different sites in the wild. The number of descendants found at the release sites the subsequent year increased with increasing number of colour morphs in the founder group, and variation in founder groups also positively affected colour morph diversity in the established populations. Since colour morphs differ in morphology, physiology, behaviour, reproductive life history and types of niche used, these findings demonstrate that variation among individuals in functionally important traits promotes establishment success under natural conditions, and further indicate that founder diversity may contribute to evolutionary rescue and increased population persistence.
Abstract:Color polymorphisms in animals may result from genetic polymorphisms, developmental plasticity, or a combination where some phenotypic components are under strong genetic control and other aspects are influenced by developmental plasticity. Understanding how color polymorphisms evolve demands knowledge of how genetic and epigenetic environmental cues influence the development and phenotypic expression of organisms. Pygmy grasshoppers (Orthoptera, Tetrigidae) vary in color pattern within and among populations. Color morphs differ in morphology, behavior, and life history, suggesting that they represent alternative ecological strategies. Pygmy grasshoppers also show fire melanism, a rapid increase in the frequency of black and dark-colored phenotypes in populations inhabiting fire-ravaged areas. We examined the influence of plasticity on color polymorphism in the pygmy grasshopper Tetrix subulata (L., 1761) using a split-brood design. Individuals were experimentally raised in solitude on either crushed charcoal or white aquarium gravel. Our analyses uncovered no plasticity of either color pattern or overall darkness of coloration in response to rearing substrate. Instead, we find a strong resemblance between maternal and offspring color patterns. We conclude that pygmy grasshopper color morphs are strongly influenced by genetic cues or maternal effects, and that there is no evidence for developmental plasticity of coloration in response to rearing conditions in these insects.Résumé : Le polymorphisme de la coloration chez les animaux peut résulter de polymorphismes génétiques, de plasticité au cours du développement ou d'une combinaison dans laquelle certaines composantes phénotypiques sont sous un fort contrôle génétique, alors que d'autres aspects sont influencés par la plasticité du développement. Une compréhension du développement des polymorphismes de la coloration exige une connaissance de l'influence des signaux environnementaux génétiques et épigénétiques sur le développement et l'expression phénotypique des organismes. Les tétrix (Orthoptera, Tetrigidae) ont des patrons de coloration qui varient au sein des populations et entre les populations. Les différents morphes de couleur diffèrent par leur morphologie, leur comportement et leur cycle biologique, indiquant qu'il s'agit de stratégies écologiques de rechange. Les tétrix possèdent aussi un mélanisme relié au feu, soit une augmentation rapide de la fré-quence des phénotypes noirs et de couleur foncée dans les populations qui vivent dans des zones ravagées par le feu. Nous examinons l'influence de la plasticité sur le polymorphisme de la coloration chez des criquets granulés, Tetrix subulata (L., 1761), qui utilisent une stratégie de couvain divisé. Nous avons élevé expérimentalement des individus solitaires sur du charbon de bois écrasé ou sur du gravier blanc d'aquarium. Nos analyses ne décèlent aucune plasticité dans le patron de coloration, ni dans la noirceur globale de la coloration en réaction au substrat d'élevage. Nous observons plutôt ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.