With the increasing adoption of Industry 4.0, optical metrology has experienced a significant boom in its implementation, as an ever-increasing number of manufacturing processes are overhauled for in-process measurement and control. As such, optical metrology for digital manufacturing is currently a hot topic in manufacturing research. Whilst contact coordinate measurement solutions have been adopted for many years, the current trend is to increasingly exploit the advantages given by optical measurement technologies. Smart automated non-contact inspection devices allow for faster cycle times, reducing the inspection time and having a continuous monitoring of process quality. In this paper, a review for the state of the art in optical metrology is presented, highlighting the advantages and impacts of the integration of optical coordinate and surface texture measurement technologies in digital manufacturing processes. Also, the range of current software and hardware technologies for digital manufacturing metrology is discussed, as well as strategies for zero-defect manufacturing for greater sustainability, including examples and in-depth discussions of additive manufacturing applications. Finally, key current challenges are identified relating to measurement speed and data-processing bottlenecks; geometric complexity, part size and surface texture; user-dependent constraints, harsh environments and uncertainty evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.