This study focuses on virus isolation of avian reoviruses from a tenosynovitis outbreak between September 2015 and June 2018, the molecular characterization of selected isolates based on partial S1 gene sequences, and the full genome characterization of seven isolates. A total of 265 reoviruses were detected and isolated, 83.3% from tendons and joints, 12.3% from the heart and 3.7% from intestines. Eighty five out of the 150 (56.6%) selected viruses for sequencing and characterization were successfully detected, amplified and sequenced. The characterized reoviruses grouped in six distinct genotypic clusters (GC1 to GC6). The most represented clusters were GC1 (51.8%) and GC6 (24.7%), followed by GC2 (12.9%) and GC4 (7.2%), and less frequent GC5 (2.4%) and GC3 (1.2%). A shift on cluster representation throughout time occurred. A reduction of GC1 and an increase of GC6 classified strains was noticed. The highest homologies to S1133 reovirus strain were detected in GC1 (~77%) while GC2 to GC6 homologies ranged between 58.5 and 54.1%. Over time these homologies have been maintained. Seven selected isolates were full genome sequenced. Results indicated that the L3, S1 and M2 genes, coding for proteins located in the virus capsid accounted for most of the variability of these viruses. The information generated in the present study helps the understanding of the epidemiology of reoviruses in California. In addition, provides insights on how other genes that are not commonly studied add variability to the reovirus genome.
The novel severe acute respiratory syndrome (SARS) coronavirus, SARS-CoV-2, is responsible for the global COVID-19 pandemic. Effective interventions are urgently needed to mitigate the effects of COVID-19 and likely require multiple strategies. Egg-extracted antibody therapies are a low-cost and scalable strategy to protect at-risk individuals from SARS-CoV-2 infection. Commercial laying hens were hyperimmunized against the SARS-CoV-2 S1 protein using three different S1 recombinant proteins and three different doses. Sera and egg yolk were collected at three and six weeks after the second immunization for enzyme-linked immunosorbent assay and plaque-reduction neutralization assay to determine antigen-specific antibody titers and neutralizing antibody titers, respectively. In this study we demonstrate that hens hyperimmunized against the SARS-CoV-2 recombinant S1 and receptor binding domain (RBD) proteins produced neutralizing antibodies against SARS-CoV-2. We further demonstrate that antibody production was dependent on the dose and type of antigen administered. Our data suggests that antibodies purified from the egg yolk of hyperimmunized hens can be used as immunoprophylaxis in humans at risk of exposure to SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.