Graft copolymers of alginate backbone and N-isopropylacrylamide/N-tert-butylacrylamide random copolymer, P(NIPAMx-co-NtBAMy), side chains (stickers) with various NtBAM content were designed and explored in aqueous media. Self-assembling thermoresponsive hydrogels are formed upon heating, in all cases, through the hydrophobic association of the P(NIPAMx-co-NtBAMy) sticky pendant chains. The rheological properties of the formulations depend remarkably on the NtBAM hydrophobic content, which regulates the lower critical solution temperature (LCST) and, in turn, the stickers’ thermo-responsiveness. The gelation point, Tgel, was shifted to lower temperatures from 38 to 20 °C by enriching the PNIPAM chains with 20 mol % NtBAM, shifting accordingly to the gelation temperature window. The consequences of the Tgel shift to the hydrogels’ rheological properties are significant at room and body temperature. For instance, at 37 °C, the storage modulus increases about two orders of magnitude and the terminal relaxation time increase about 10 orders of magnitude by enriching the stickers with 20 mol % hydrophobic moieties. Two main thermo-induced behaviors were revealed, characterized by a sol–gel and a weak gel–stiff gel transition for the copolymer with stickers of low (0.6 mol %) and high (14, 20 mol %) NtBAM content, respectively. The first type of hydrogels is easily injectable, while for the second one, the injectability is provided by shear-thinning effects. The influence of the type of media (phosphate buffer (PB), phosphate-buffered saline (PBS), Dulbecco’s modified Eagle’s medium (DMEM)) on the hydrogel properties was also explored and discussed. The 4 wt % NaALG-g-P(NIPAM80-co-NtBAM20)/DMEM formulation showed excellent shear-induced injectability at room temperature and instantaneous thermo-induced gel stiffening at body temperature, rendering it a good candidate for cell transplantation potential applications.
We report the preparation of mesoporous silica nanoparticles covered by layer by layer (LbL) oppositely charged weak polyelectrolytes, comprising poly(allylamine hydrochloride) (PAH) and a sodium alginate, highly grafted by N-isopropylacrylamide/N-tert-butylacrylamide random copolymers, NaALG-g-P(NIPAM90-co-NtBAM10) (NaALG-g). Thanks to the pH dependence of the degree of ionization of the polyelectrolytes and the LCST-type thermosensitivity of the grafting chains of the NaALG-g, the as-prepared hybrid nanoparticles (hNP) exhibit pH/thermo-responsive drug delivery capabilities. The release kinetics of rhodamine B (RB, model drug) can be controlled by the number of PAH/NaALG-g bilayers and more importantly by the environmental conditions, namely, pH and temperature. As observed, the increase of pH and/or temperature accelerates the RB release under sink conditions. The same NaALG-g was used as gelator to fabricate a hNP@NaALG-g hydrogel composite. This formulation forms a viscous solution at room temperature, and it is transformed to a self-assembling hydrogel (sol-gel transition) upon heating at physiological temperature provided that its Tgel was regulated at 30.7 °C, by the NtBAM hydrophobic monomer incorporation in the side chains. It exhibits excellent injectability thanks to its combined thermo- and shear-responsiveness. The hNP@NaALG-g hydrogel composite, encapsulating hNP covered with one bilayer, exhibited pH-responsive sustainable drug delivery. The presented highly tunable drug delivery system (DDS) (hNP and/or composite hydrogel) might be useful for biomedical potential applications.
Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative method to tune Tgel using an alginate-based thermo-responsive gelator bearing two kinds of grafting chains (heterograft copolymer topology) of P(NIPAM86-co-NtBAM14) random copolymers and pure PNIPAM, differing in their lower critical solution temperature (LCST) about 10 °C. Interestingly, the Tgel of the heterograft copolymer is controlled from the overall hydrophobic content, NtBAM, of both grafts, implying the formation of blended side chains in the crosslinked nanodomains of the formed network. Rheological investigation of the hydrogel showed excellent responsiveness to temperature and shear. Thus, a combination of shear-thinning and thermo-thickening effects provides the hydrogel with injectability and self-healing properties, making it a good candidate for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.