Current theories of bilingualism disagree on the extent to which separate brain regions are used to maintain or process one's first and second language. The present study took a novel multivariate approach to address this question. We examined whether bilinguals maintain distinct neural representations of two languages; specifically, we tested whether brain areas that are involved in processing word meaning in either language are reliably representing each language differently, and whether language representation is influenced by individual differences in proficiency level and age of acquisition (AoA) of L2. Thirty‐one English–Mandarin bilingual adults performed a picture–word matching task in both languages. We then used representational similarity analysis to examine which brain regions reliably showed different patterns of activity for each language. We found that both proficiency and AoA predicted dissimilarity between language representations in several brain areas within the language network as well as several regions of the ventral visual pathway, demonstrating that top‐down language knowledge and individual language experience shapes concept representation in this processing stream. The results support the model of an integrated language system in bilinguals, along with a novel description of how representations for each language change with proficiency level and L2 AoA.
Current theories of bilingualism disagree on the extent to which separate brain regions are used to maintain or process one’s first and second language. The present study took a novel multivariate approach to address this question. We examined whether bilinguals maintain distinct neural representations of two languages; specifically, we tested whether brain areas that are involved in processing word meaning in either language are reliably representing each language differently, and whether language representation is influenced by individual differences in proficiency level and age of acquisition of L2. Thirty-one English-Mandarin bilingual adults performed a picture-word matching task in both languages. We then used representational similarity analysis to examine which brain regions reliably showed different patterns of activity for each language. As a group, there were no regions that reliably represented languages distinctly. However, both proficiency and age of acquisition predicted dissimilarity between language representations in several brain areas within the language network as well as several regions of the ventral visual pathway, demonstrating that top-down language knowledge and individual language experience shapes concept representation in the processing stream. The results support the model of an integrated language system in bilinguals, along with a novel description of how representations for each language change with proficiency level and L2 age of acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.