The field of additive manufacturing (AM), and especially laser powder‐bed fusion (LPBF), is constantly growing. Process windows for a large variety of materials are already developed. Nevertheless, some materials are still difficult to manufacture with LPBF. One of these materials is the tungsten carbide/cobalt‐based hard metal (WC–Co), which is conventionally produced by powder metallurgy including liquid‐phase sintering. Most approaches to manufacture WC–Co with LPBF show a high porosity, undesirable phases in the microstructure, and inhomogeneous carbide distribution. However, the production of WC–Co cutting tools by LPBF will offer some benefits such as production of geometrically optimized inner cooling channels or optimized geometry of the cutting edges. Herein, WC with 17 wt% Co is processed by LPBF with a powder‐bed heating of 900 °C. Afterwards microstructure, density, and hardness are determined. In addition, X‐ray diffraction (XRD) analysis is performed to determine the phase composition. To investigate the edge‐holding properties of LPBF‐manufactured WC–Co cutting tools, stock removal tests are conducted on three different workpiece materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.