With breast cancer (BC) therapy improvements, the appearance of brain metastases has been increasing, representing a life-threatening condition. Brain metastasis formation involves BC cell (BCC) extravasation across the blood–brain barrier (BBB) and brain colonization by unclear mechanisms. We aimed to disclose the actors involved in BC brain metastasis formation, focusing on BCCs’ phenotype, growth factor expression, and signaling pathway activation, correlating with BBB alterations and intercellular communication. Hippocampi of female mice inoculated with 4T1 BCCs were examined over time by hematoxylin-eosin, immunohistochemistry and immunofluorescence. Well-established metastases were observed at seven days, increasing thereafter. BCCs entering brain parenchyma presented mesenchymal, migratory, and proliferative features; however, with time, they increasingly expressed epithelial markers, reflecting a mesenchymal–epithelial transition. BCCs also expressed platelet-derived growth factor-B, β4 integrin, and focal adhesion kinase, suggesting autocrine and/or paracrine regulation with adhesion signaling activation, while balance between Rac1 and RhoA was associated with the motility status. Intercellular communication via gap junctions was clear among BCCs, and between BCCs and endothelial cells. Thrombin accumulation, junctional protein impairment, and vesicular proteins increase reflect BBB alterations related with extravasation. Expression of plasmalemma vesicle-associated protein was increased in BCCs, along with augmented vascularization, whereas pericyte contraction indicated mural cells’ activation. Our results provide further understanding of BC brain metastasis formation, disclosing potential therapeutic targets.
Triple negative breast cancer presents higher mortality and poorer survival rates than other breast cancer (BC) types, due to the proneness to brain metastases formation, which are usually diagnosed at advanced stages. Therefore, the discovery of BC brain metastases (BCBM) biomarkers appears pivotal for a timely intervention. With this work, we aimed to disclose microRNAs (miRNAs) and extracellular vesicles (EVs) in the circulation as biomarkers of BCBM formation. Using a BCBM animal model, we analyzed EVs in plasma by nanoparticle tracking analysis and ascertained their blood-brain barrier (BBB) origin by flow cytometry. We further evaluated circulating miRNAs by RT-qPCR and their brain expression by in situ hybridization. In parallel, a cellular model of BCBM formation, combining triple negative BC cells and BBB endothelial cells, was used to differentiate the origin of biomarkers. Established metastases were associated with an increased content of circulating EVs, particularly of BBB origin. Interestingly, deregulated miRNAs in the circulation were observed prior to BCBM detection, and their brain origin was suggested by matching alterations in brain parenchyma. In vitro studies indicated that miR-194-5p and miR-205-5p are expressed and released by BC cells, endothelial cells and during their interaction. These results highlight miRNAs and EVs as biomarkers of BCBM in early and advanced stages, respectively.
Myocyte enhancer factor 2C (MEF2C) is increasingly expressed in mice along with breast cancer brain metastases (BCBM) development. We aim to ascertain MEF2C expression in human BCBM, establish the relationship with disease severity, disclose the involvement of vascular endothelial growth factor receptor-2 (VEGFR-2) and β-catenin, also known as KDR and CTNNB1, respectively, and investigate if matched primary tumors express the protein. We studied resected BCBM for the expression of MEF2C, VEGFR-2, and ß-catenin, as well as proliferation (Ki-67) and epithelial (pan Cytokeratin) markers, and related experimental and clinical data. MEF2C expression was further assessed in matched primary tumors and non-BCBM samples used as controls. MEF2C expression was observed in BCBM, but not in controls, and was categorized into three phenotypes (P): P1, with extranuclear location; P2, with extranuclear and nuclear staining, and P3, with nuclear location. Nuclear translocation increased with metastases extension and Ki-67-positive cells number. P1 was associated with higher VEFGR-2 plasma membrane immunoreactivity, whereas P2 and P3 were accompanied by protein dislocation. P1 was accompanied by β-catenin membrane expression, while P2 and P3 exhibited β-catenin nuclear translocation. Primary BC samples expressed MEF2C in mammary ducts and scattered cells in the parenchyma. MEF2C emerges as a player in BCBM associated with disease severity and VEGFR-2 and β-catenin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.