The Ti-18Zr-15Nb shape memory alloys are a new material for medical implants. The regularities of phase transformations during heating of this alloy in the coarse-grained quenched state and the nanostructured state after high-pressure torsion have been studied. The specimens in quenched state (Q) and HPT state were annealed at 300–550 °C for 0.5, 3, and 12 h. The α-phase formation in Ti-18Zr-15Nb alloy occurs by C-shaped kinetics with a pronounced peak near 400–450 °C for Q state and near 350–450 °C for HPT state, and stops or slows down at higher and lower annealing temperatures. The formation of a nanostructured state in the Ti-18Zr-15Nb alloy as a result of HPT suppresses the β→ω phase transformation during low-temperature annealing (300–350 °C), but activates the β→α phase transformation. In the Q-state the α-phase during annealing at 450–500 °C is formed in the form of plates with a length of tens of microns. The α-phase formed during annealing of nanostructured specimens has the appearance of nanosized particle-grains of predominantly equiaxed shape, distributed between the nanograins of β-phase. The changes in microhardness during annealing of Q-specimens correlate with changes in phase composition during aging.
The effect of slippage during High Pressure Torsion (HPT) of technically pure Ti and pure Cu samples was investigated. The “joint torsion of the disk halves” method was used to evaluate the effect of slippage. It was shown that slippage starts already at the early stages of HPT. With a further increase in the number of revolutions n, the slippage effect increases, and no torsional deformation occurs after n = 5. The slippage effect is explained by analyzing the surface friction forces between the sample and the anvil. However, studies via TEM and XRD have shown that the structure of Ti samples after HPT at the investigated conditions is grinded to a nanocrystalline state. A structure is formed in Ti similar to that observed after HPT by other authors. The dislocation density increases with increasing HPT degree from n = 5 to n = 10 revolutions, despite slippage. Consequently, despite slippage at HPT at n ≥ 5, deformation still occurs. The following assumptions are made to explain the accumulated strain in the sample at HPT. It is assumed that the planes of the upper and lower anvil during HPT are at a slight inclination relative to each other. Computer modeling using the Deform 3D software package has shown that this leads to the accumulations of significant strain during HPT.
This paper presents the results of studies on the true fracture stresses of the Al alloy 6101 with an ultrafine-grained (UFG) structure processed by equal channel angular pressing -conform (ECAP-C) method and the same alloy after artificial aging (AA state). The grain size in the UFG state was about 500 nm. Aging particles and Al 3 Fe particles were present in the structure of AA and UFG state. Strength and yield stress increase as a result of the formation of UFG structure. The true strain to failure in AA and UFG states of 6101 alloy, taking into account the measurement error, is the same. In this case, the true fracture stress of samples with the UFG structure is markedly higher than the true fracture stress of samples with the AA structure. An explanation for the increase in the true fracture stress of specimens with UFG structure based on a generalization of the Hall-Petch relation and the Zener-Strauss model, a criterion of pore formation on the particle, is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.