This research investigates the prediction of failure and remaining useful life (RUL) of gearboxes for modern multi‐megawatt wind turbines. Failure and RUL are predicted through the use of machine learning techniques and large amounts of labelled wind turbine supervisory control and data acquisition (SCADA) and vibration data. The novelty of this work stems from unprecedented access to one of the world's largest wind turbine operational and reliability databases, containing thousands of turbine gearbox failure examples and complete SCADA and vibration data in the build up to those failures. Through access to that data, this paper is unique in having enough failure examples and data to draw the conclusions detailed in the remainder of this abstract. This paper shows that artificial neural networks provide the most accurate failure and RUL prediction out of three machine learning techniques trialled. This work also demonstrates that SCADA data can be used to predict failure up to a month before it occurs, and high frequency vibration data can be used to extend that accurate prediction capability to 5 to 6 months before failure. This paper demonstrates that two class neural networks can correctly predict gearbox failures between 72.5% and 75% of the time depending on the failure mode when trained with SCADA data and 100% of the time when trained with vibration data. Data trends in the build up to failure and weighting of the SCADA data inputs are also provided. Lastly, this work shows how multi‐class neural networks demonstrate more potential in predicting gearbox failure when trained with vibration data as opposed to training with SCADA data.
Abstract. This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the system that converts kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. Offshore development and digitalization are also a focal point in this study. Drivetrain in this context includes the whole power conversion system: main bearing, shafts, gearbox, generator and power converter. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps. The main challenges in drivetrain research identified in this paper include drivetrain dynamic responses in large or floating turbines, aerodynamic and farm control effects, use of rare-earth material in generators, improving reliability through prognostics, and use of advances in digitalization. These challenges illustrate the multidisciplinary aspect of wind turbine drivetrains, which emphasizes the need for more interdisciplinary research and collaboration.
Abstract:The goal of the present paper is to achieve the diagnosis of an in-service 1.5 MW wind turbine equipped with a doubly-fed induction generator through current signature and vibration analyses. Real data from operating machines have rarely been analysed in the scientific literature through current signature analysis supported by vibrations. The wind turbine under study was originally misdiagnosed by the operator, where a healthy component was replaced and the actual failure continued progressing. The chronological evolution of both the electrical current and vibration spectra is presented to conduct an in-depth tracking of the fault. The diagnosis is achieved through spectral analysis of the stator currents, where fault frequency components related to rotor mechanical unbalance are identified. This is confirmed by the vibration analysis, which provides insightful information on the health of the drive train. These results can be implemented in condition monitoring strategies, which is of great interest to optimise operation and maintenance costs of wind farms.
Anomaly detection for wind turbine condition monitoring is an active area of research within the wind energy operations and maintenance (O & M) community. In this paper three models were compared for multi-megawatt operational wind turbine SCADA data. The models used for comparison were One-Class Support Vector Machine (OCSVM), Isolation Forest (IF), and Elliptical Envelope (EE). Each of these were compared for the same fault, and tested under various different data configurations. IF and EE have not previously been used for fault detection for wind turbines, and OCSVM has not been used for SCADA data. This paper presents a novel method of condition monitoring that only requires two months of data per turbine. These months were separated by a year, the first being healthy and the second unhealthy. The number of anomalies is compared, with a greater number in the unhealthy month being considered correct. It was found that for accuracy IF and OCSVM had similar performances in both training regimes presented. OCSVM performed better for generic training, and IF performed better for specific training. Overall, IF and OCSVM had an average accuracy of 82% for all configurations considered, compared to 77% for EE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.