The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing anti-tumour cytokines and effectively killing tumour cells. These are major attributes of T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of pre-clinical cancer models. This notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating T cell responses to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.
Cancer-associated inflammation mobilizes a variety of leukocyte populations that can inhibit or enhance tumor cell growth in situ. These subsets include γδ T cells, which can infiltrate tumors and typically provide large amounts of antitumor cytokines, such as IFN-γ. By contrast, we report here that in a well-established transplantable (ID8 cell line) model of peritoneal/ovarian cancer, γδ T cells promote tumor cell growth. γδ T cells accumulated in the peritoneal cavity in response to tumor challenge and could be visualized within solid tumor foci. Functional characterization of tumor-associated γδ T cells revealed preferential production of interleukin-17A (IL-17), rather than IFN-γ. Consistent with this finding, both T cell receptor (TCR)δ-deficient and IL-17-deficient mice displayed reduced ID8 tumor growth compared with wild-type animals. IL-17 production by γδ T cells in the tumor environment was essentially restricted to a highly proliferative CD27 (−) subset that expressed Vγ6 instead of the more common Vγ1 and Vγ4 TCR chains. The preferential expansion of IL-17-secreting CD27 (−) Vγ6 (+) γδ T cells associated with the selective mobilization of unconventional small peritoneal macrophages (SPMs) that, in comparison with large peritoneal macrophages, were enriched for IL-17 receptor A, and for protumor and proangiogenic molecular mediators, which were upregulated by IL-17. Importantly, SPMs were uniquely and directly capable of promoting ovarian cancer cell proliferation. Collectively, this work identifies an IL-17-dependent lymphoid/myeloid crosstalk involving γδ T cells and SPMs that promotes tumor cell growth and thus counteracts cancer immunosurveillance. gamma-delta T cells | tumor immunologyD eveloping tumors are infiltrated by a variety of leukocyte subsets that can either promote or inhibit inflammation, and thus impact on cancer progression (1). Among such populations are γδ T cells, which are major players in lymphoid stress surveillance likely due to their recognition of stress-inducible molecules independently of MHC-mediated antigen presentation (2). Moreover, abundant IFN-γ secretion and cytotoxic effector functions endow γδ T cells with potent antitumor activity. This has been clearly documented in murine models of spontaneous (3), chemically induced (4), transgenic (5), and transplantable (6, 7) tumors. For example, in the widely used B16 melanoma model, γδ T cells were shown to infiltrate tumors very early and provided a critical source of IFN-γ that significantly delayed tumor growth (6, 7).Human γδ T cells also possess IFN-γ-secreting potential, which is displayed immediately at birth (8) and display cytotoxicity against tumor lines of diverse origin, including epithelial (9, 10) and hematological (11,12) tumors. This has prompted the development of cancer clinical trials targeting γδ T cells, which have produced encouraging, albeit highly variable, degrees of therapeutic responses (13-15). There is therefore great interest in maximizing the antitumor functions of γδ T cells for cancer ...
Highlights d NK cells drive broad inflammatory remodeling characteristic of T-cell-inflamed tumors d PGE2 acting on EP2 and EP4 on NK cells prevents the TME switch enabling immune escape d Opposing inflammatory profiles found in many human cancer types have prognostic value d A signature capturing pro-and anti-tumor factors predicts response to immunotherapy
Interleukin 17 (IL-17)–producing γδ T cells (γδ17 T cells) have been recently found to promote tumor growth and metastasis formation. How such γδ17 T-cell responses may be regulated in the tumor microenvironment remains, however, largely unknown. Here, we report that tumor-associated neutrophils can display an overt antitumor role by strongly suppressing γδ17 T cells. Tumor-associated neutrophils inhibited the proliferation of murine CD27− Vγ6+ γδ17 T cells via induction of oxidative stress, thereby preventing them from constituting the major source of pro-tumoral IL-17 in the tumor microenvironment. Mechanistically, we found that low expression of the antioxidant glutathione in CD27− γδ17 T cells renders them particularly susceptible to neutrophil-derived reactive oxygen species (ROS). Consistently, superoxide deficiency, or the administration of a glutathione precursor, rescued CD27− Vγ6+ γδ17 T-cell proliferation in vivo. Moreover, human Vδ1+ γδ T cells, which contain most γδ17 T cells found in cancer patients, also displayed low glutathione levels and were potently inhibited by ROS. This work thus identifies an unanticipated, immunosuppressive yet antitumoral, neutrophil/ROS/γδ17 T-cell axis in the tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.