IntroductionState of the art artificial intelligence (AI) models have the potential to become a “one-stop shop” to improve diagnosis and prognosis in several oncological settings. The external validation of AI models on independent cohorts is essential to evaluate their generalization ability, hence their potential utility in clinical practice. In this study we tested on a large, separate cohort a recently proposed state-of-the-art convolutional neural network for the automatic segmentation of intraprostatic cancer lesions on PSMA PET images.MethodsEighty-five biopsy proven prostate cancer patients who underwent 68Ga PSMA PET for staging purposes were enrolled in this study. Images were acquired with either fully hybrid PET/MRI (N = 46) or PET/CT (N = 39); all participants showed at least one intraprostatic pathological finding on PET images that was independently segmented by two Nuclear Medicine physicians. The trained model was available at https://gitlab.com/dejankostyszyn/prostate-gtv-segmentation and data processing has been done in agreement with the reference work.ResultsWhen compared to the manual contouring, the AI model yielded a median dice score = 0.74, therefore showing a moderately good performance. Results were robust to the modality used to acquire images (PET/CT or PET/MRI) and to the ground truth labels (no significant difference between the model’s performance when compared to reader 1 or reader 2 manual contouring).DiscussionIn conclusion, this AI model could be used to automatically segment intraprostatic cancer lesions for research purposes, as instance to define the volume of interest for radiomics or deep learning analysis. However, more robust performance is needed for the generation of AI-based decision support technologies to be proposed in clinical practice.
INTRODUCTION Radiomics has been proven effective for the characterisation of primary prostate cancer (PCa).1,2 However, the limited interpretability of the proposed models represents one of the major limitations in this field.3,4 This study investigated 68Ga-prostate-specific membrane antigen (PSMA) PET radiomics for the prediction of post-surgical International Society of Urological Pathology (ISUP) grade in patients with primary PCa, ensuring model interpretability. MATERIALS AND METHODS Forty-seven patients with PCa were examined with 68Ga-PSMA PET at the authors’ institution. Those patients were enrolled in this study prior to radical prostatectomy. Images were acquired using either PET/MRI or PET/CT. ISUP grade was available at both biopsy and radical prostatectomy for all patients. A radiologist manually segmented the whole prostate on PET images using the co-registered CT or MRI for anatomical localisation on 3D Slicer software (Brigham and Women’s Hospital, Boston, Massachusetts, USA).5 The whole prostate was used as volume of interest (VOI) to avoid the limitations of radiomics for small volumes.6 VOIs were normalised, resampled, and discretised. A total of 103 image biomarker standardisation initiative-compliant, radiomic features (RF) were extracted using PyRadiomics (Python Software Foundation, Beaverton, Oregon, USA).7 RFs were harmonised with the ComBat method8 to control for the scanner effect, and selected using the minimum redundancy maximum relevance algorithm. Combinations of the four most relevant RFs were used to train 12 radiomics machine learning models for the prediction of post-surgical ISUP ≥4 versus ISUP <4 that were validated by five-fold repeated stratified cross-validation. To ensure that results were not driven by spurious associations, two ad hoc control models were generated. The first one Creative Commons Attribution-Non Commercial 4.0 ● April 2023 ● Urology 37 EAU 2023 • Abstract had SUVmax and VOI volume as input (radiomics baseline), while the other was made by setting to zero all voxel values prior features extraction (PET zeros). Balanced accuracy, sensitivity, specificity, and positive and negative predictive values were collected. The performance of the best developed model was compared with that of ISUP grade biopsy. RESULTS ISUP grade at biopsy was upgraded in 9 out of 47 patients after prostatectomy, resulting in a balanced accuracy of 85.9%; sensitivity of 71.9%; specificity of 100.0%; positive predicted value of 100.0%; and negative predictive value of 62.5%. The best performing radiomic model yielded a balanced accuracy of 87.6%; sensitivity of 88.6%; specificity of 86.7%; positive predicted value of 94.0%; and negative predicted value of 82.5%. All radiomic models trained with at least two RFs (grey level size zone matrix; zone entropy and shape; least axis length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with two or more RFs (Mann–Whitney U test; p>0.05). See Table 1 for a detailed report of all the generated models’ performance. CONCLUSION These findings support the role of 68Ga-PSMA PET radiomics for the accurate and non-invasive prediction of post-surgical ISUP grade. Future multicentre studies will be needed to establish with certainty the accuracy and reproducibility of the radiomic signature proposed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.