Estrogen is of importance for the regulation of adult bone metabolism. The aim of the present study was to determine the role of estrogen receptor-beta (ERbeta) in vivo on global estrogen-regulated transcriptional activity in bone. The effect of estrogen in bone of ovariectomized mice was determined using microarray analysis including 9400 genes. Most of the genes (95% = 240 genes) that were increased by estrogen in wild-type (WT) mice were also increased by estrogen in ERbeta-inactivated mice. Interestingly, the average stimulatory effect of estrogen on the mRNA levels of these genes was 85% higher in ERbeta-inactivated than in WT mice, demonstrating that ERbeta reduces estrogen receptor-alpha (ERalpha)-regulated gene transcription in bone. The average stimulatory effect of estrogen on estrogen-regulated bone genes in ERalpha-inactivated mice was intermediate between that seen in WT and ERalphabeta double-inactivated mice. Thus, ERbeta inhibits ERalpha-mediated gene transcription in the presence of ERalpha, whereas, in the absence of ERalpha, it can partially replace ERalpha. In conclusion, our in vivo data indicate that an important physiological role of ERbeta is to modulate ERalpha-mediated gene transcription supporting a "Ying Yang" relationship between ERalpha and ERbeta in mice.
Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), and . Three-monthold ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2·3 µg/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ER activity or represent an ER /ER -independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ER mediated.
Androgens may regulate the male skeleton either directly by stimulation of the androgen receptor (AR) or indirectly by aromatization of androgens into estrogens and, thereafter, by stimulation of the estrogen receptors (ERs). To directly compare the effect of ER activation on bone in vivo with the effect of AR activation, 9-month-old orchidectomized wild-type and ER-inactivated mice were treated with the nonaromatizable androgen 5␣-dihydrotestosterone, 17-estradiol, or vehicle. Both ER␣ and AR but not ER activation preserved the amount of trabecular bone. ER␣ activation resulted both in a preserved thickness and number of trabeculae. In contrast, AR activation exclusively preserved the number of trabeculae, whereas the thickness of the trabeculae was unaffected. Furthermore, the effects of 17-estradiol could not be mediated by the AR, and the effects of 5␣-dihydrotestosterone were increased rather than decreased in ER-inactivated mice. ER␣, but not AR or ER, activation resulted in preserved thickness, volumetric density, and mechanical strength of the cortical bone. ER␣ activation increased serum levels of insulin-like growth factor I, which were positively correlated with all the cortical and trabecular bone parameters that were specifically preserved by ER␣ activation but not by AR activation, suggesting that insulin-like growth factor I might mediate these effects of ER␣ activation. Thus, the in vivo bone-sparing effect of ER␣ activation is distinct from the bone-sparing effect of AR activation in adult male mice. Because these two pathways are clearly distinct from each other, one may speculate that a combined treatment of selective ER modulators and selective AR modulators might be beneficial in the treatment of osteoporosis. S ex steroids are important not only for the maintenance of the female skeleton, but also for the male skeleton. The relative contribution of androgens versus estrogens in the regulation of the male skeleton is unclear. Testosterone replacement therapy increases bone mineral density (BMD) in hypogonadal men (1), but several clinical studies indicate that BMD is correlated more to serum levels of estradiol than to serum levels of testosterone in males (2-4). A previous clinical study, which directly compared estrogen versus testosterone effects on bone, showed that estrogens play the dominant role in the regulation of bone resorption markers, whereas both estrogens and testosterone contribute to the maintenance of markers for bone formation (5).The effects of testosterone can be exerted either directly by means of the androgen receptor (AR) or indirectly by aromatization to estrogens and further by estrogen receptor (ER)␣ and͞or ER. All three sex steroid receptors are expressed both in growth-plate cartilage and in bone (6-11). Functional studies using sex steroid receptor-inactivated animal models have demonstrated that ER␣ but not ER is important for the regulation of appendicular longitudinal skeletal growth in male mice (12-14), and a recent report indicates that AR-inactivate...
To determine the long-term role of ER in the regulation of longitudinal bone growth, appendicular and axial skeletal growth was followed and compared in female ER  ؊/؊ , ER␣ ؊/؊ , and ER␣ ؊/؊  ؊/؊ mice. Our results show that ER inhibits appendicular and axial skeletal growth and has the capacity to induce fusion of the growth plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.