In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.
Large-area and transparent all-dielectric metasurfaces sustaining photonic bound states in the continuum (BICs) provide a set of fundamental advantages for ultrasensitive biosensing. BICs bridge the gap of large effective mode volume with large experimental quality factor. Relying on the transduction mechanism of reactive sensing principle, herein, we first numerically study the potential of subwavelength confinement driven by topological decoupling from free space radiation for BIC-based biosensing. Then, we experimentally combine this capability with minimal and low-cost optical setup, applying the devised quasi-BIC resonator for PNA/DNA selective biosensing with real-time monitoring of the binding event. A sensitivity of 20 molecules per micron squared is achieved, i.e. ≃0.01 pg. Further enhancement can easily be envisaged, pointing out the possibility of single-molecule regime. This work aims at a precise and ultrasensitive approach for developing low-cost point-of-care tools suitable for routine disease prescreening analyses in laboratory, also adaptable to industrial production control.
The localization of the electromagnetic field at the nanoscale can play a key role in many applications, such as sensing, spectroscopy and energy conversion. In the last years, great efforts have been performed to study and realize all-dielectric loss-free nanostructures to confine the radiation without the limits imposed by the plasmonic systems. Here we demonstrate that the field enhancement in proximity of a photonic crystal metasurface supporting bound states in the continuum can be explored to boost the light-matter interaction. We design and realize an innovative sensing scheme for bulk and surface measurement with ultra-high figure of merit and apply this new configuration for studying a specific protein-protein interaction. The recognition scheme can be coupled to a fluorescence-based sensing approach, which exploits the capability of the sensor to strongly enhance fluorescence signals. Our results provide new solutions for light manipulation at the nanoscale, especially for sensing and nonlinear optics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.