In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.
Maize (Zea mays L.) is one of the main cereals as a source of food, forage and processed products for industry. World production is around 790 million tonnes of maize because as a staple food it provides more than one-third of the calories and proteins in some countries. Stored maize is a man-made ecosystem in which quality and nutritive changes occur because of interactions between physical, chemical and biological factors. Fungal spoilage and mycotoxin contamination are of major concern. Aspergillus and Fusarium species can infect maize pre-harvest, and mycotoxin contamination can increase if storage conditions are poorly managed. Prevention strategies to reduce the impact of mycotoxin in maize food and feed chains are based on using a hazard analysis critical control point systems (HACCP) approach. To reduce or prevent production of mycotoxins, drying should take place soon after harvest and as rapidly as feasible. The critical water content for safe storage corresponds to a water activity (a(w)) of about 0.7. Problems in maintaining an adequately low a(w) often occur in the tropics where high ambient humidity make the control of commodity moisture difficult. Damage grain is more prone to fungal invasion and, therefore, mycotoxin contamination. It is important to avoid damage before and during drying, and during storage. Drying maize on the cob before shelling is a very good practice. In storage, many insect species attack grain and the moisture that can accumulate from their activities provides ideal conditions for fungal activity. To avoid moisture and fungal contamination, it is essential that the numbers of insects in stored maize should be kept to a minimum. It is possible to control fungal growth in stored commodities by controlled atmospheres, preservatives or natural inhibitors. Studies using antioxidants, essential oils under different conditions of a(w), and temperature and controlled atmospheres have been evaluated as possible strategies for the reduction of fungal growth and mycotoxin (aflatoxins and fumonisins) in stored maize, but the cost of these treatments is likely to remain prohibitive for large-scale use.
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. Previously (Geiser et al. 2013; Phytopathology 103:400-408. 2013), the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani Species Complex (FSSC). Subsequently, this concept was challenged by one research group (Lombard et al. 2015 Studies in Mycology 80: 189-245) who proposed dividing Fusarium into seven genera, including the FSSC as the genus Neocosmospora, with subsequent justification based on claims that the Geiser et al. (2013) concept of Fusarium is polyphyletic (Sandoval-Denis et al. 2018; Persoonia 41:109-129). Here we test this claim, and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species recently described as Neocosmospora were recombined in Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural and practical taxonomic option available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.