The development of physiologically plausible neuron models comes with increased complexity, which poses a challenge for many-core computing. In this work, we have chosen an extension of the demanding Hodgkin-Huxley model for the neurons of the Inferior Olivary Nucleus, an area of vital importance for motor skills. The computing fabric of choice is an Intel Xeon-Xeon Phi system, widely-used in modern computing infrastructure. The target application is parallelized with combinations of MPI and OpenMP. The best configurations are scaled up to human InfOli numbers.
In-vivo and in-vitro experiments are routinely used in neuroscience to unravel brain functionality. Although they are a powerful experimentation tool, they are also time-consuming and, often, restrictive. Computational neuroscience attempts to solve this by using biologically-plausible and biophysicallymeaningful neuron models, most prominent among which are the conductance-based models. Their computational complexity calls for accelerator-based computing to mount large-scale or realtime neuroscientific experiments. In this paper, we analyze and draw conclusions on the class of conductance models by using a representative modeling application of the inferior olive (InfOli), an important part of the olivocerebellar brain circuit. We conduct an extensive profiling session to identify the computational and data-transfer requirements of the application under various realistic use cases. The application is, then, ported onto two acceleration nodes, an Intel Xeon Phi and a Maxeler Vectis Data Flow Engine (DFE). We evaluate the performance scalability and resource requirements of the InfOli application on the two target platforms. The analysis of InfOli, which is a real-life neuroscientific application, can serve as a useful guide for porting a wide range of similar workloads on platforms like the Xeon Phi or the Maxeler DFEs. As accelerators are increasingly populating High-Performance Computing (HPC) infrastructure, the current paper provides useful insight on how to optimally use such nodes to run complex and relevant neuron modeling workloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.