Background. The improvement of insulin sensitivity by exercise has been shown to be inhibited by supplementation of vitamins acting as antioxidants.Objective. To examine effects of exercise with or without blueberries, containing natural antioxidants, on cardio-metabolic risk factors.Methods. Fifteen healthy men and 17 women, 27.6 ± 6.5 years old, were recruited, and 26 completed a randomized cross-over trial with 4 weeks of exercise by running/jogging 5 km five times/week and 4 weeks of minimal physical activity. Participants were also randomized to consume 150 g of blueberries, or not, on exercise days. Laboratory variables were measured before and after a 5 km running-race at maximal speed at the beginning and end of each period, i.e. there were four maximal running-races and eight samplings in total for each participant.Results. Insulin and triglyceride levels were reduced while HDL-cholesterol increased by exercise compared with minimal physical activity. Participants randomized to consume blueberries showed an increase in fasting glucose levels compared with controls, during the exercise period (blueberries: from 5.12 ± 0.49 mmol/l to 5.32 ± 0.29 mmol/l; controls: from 5.24 ± 0.27 mmol/l to 5.17 ± 0.23 mmol/l, P = 0.04 for difference in change). Triglyceride levels fell in the control group (from 1.1 ± 0.49 mmol/l to 0.93 ± 0.31 mmol/l, P = 0.02), while HDL-cholesterol increased in the blueberry group (from 1.51 ± 0.29 mmol/l to 1.64 ± 0.33 mmol/l, P = 0.006).Conclusions. Ingestion of blueberries induced differential effects on cardio-metabolic risk factors, including increased levels of both fasting glucose and HDL-cholesterol. However, since it is possible that indirect effects on food intake were induced, other than consumption of blueberries, further studies are needed to confirm the findings.
BackgroundWe aimed to study the impact by running 5 km, at maximal speed, on the normal variations of metabolic variables related to glucose, insulin, insulin sensitivity, cortisol, glucagon, Troponin T and metabolic rate.Material and methodsFive women and 12 men 25.7±5.2 years of age with a body-mass-index of 22.5±2.3 kg/m2 where recruited to run 5 km at individual maximal speed in the morning, and to a corresponding day of rest, followed by standardized breakfast and lunch meals. Blood sampling and measurement of indirect calorimetry were done before and after meals. The participants were randomized regarding the order of the two trial-days in this cross-over study.ResultsInsulin and cortisol levels were higher, and insulin sensitivity was lower, on the race-day compared with the day of rest (linear mixed model: p<0.0001 for all three analyses). However, glucose levels and metabolic rate did not differ between the two trial days (p = 0.29 and p = 0.53, respectively). When analyzing specific time-points we found that glucose increased from 5.01±0.37 mmol/l to 6.36 ± 1.3 mmol/l, p<0.0001, by running, while serum insulin concomitantly increased from 42±21 to 90±54 pmol/l, p<0.0001. In accordance, the QUICKI index of serum sensitivity, 1/(log10insulin+log10glucose), was lowered post-race, p<0.0001. Serum cortisol levels increased from 408±137 nmol/l to 644±171 nmol/l, p<0.0001, post-race while serum glucagon levels were unaffected. Troponin T was detectable in serum post-race in 12 out of the 17 participants and reached or surpassed the clinical reference level of 15 ng/l in three subjects. Post-race electrocardiograms displayed no pathologies.ConclusionsRelatively short running-races can apparently induce a reduction in insulin sensitivity that is not fully compensated by concomitantly increased insulin secretion intended to ensure euglycemia. Since also Troponin T was detected in plasma in a majority of the participants, our data suggest that it is possible to induce considerable metabolic stress by running merely 5 km, when striving for maximal speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.