Aim Existing global models to predict standing biomass are based on trees characterized by a single principal stem, well developed in height. However, their use in open woodlands and shrublands, characterized by multistemmed species with substantial crown development, generates a high level of uncertainty in biomass estimates. This limitation led us to (a) develop global models of shrub individual aboveground biomass based on simple allometric variables, (b) to compare the fit of these models with existing global biomass models, and (c) to assess whether models fit change when bioclimatic variables are considered. Location Global. Time period Present. Major taxa studied 118 species of shrubs. Methods We compile a database of 3,243 individuals across 49 sites distributed worldwide. Including stem basal diameter, height and crown diameter as predictor variables, we built potential models and compared their fit using generalized least squares. We used mixed effects models to determine if bioclimatic variables improved the accuracy of biomass models. Results Although the most important variable in terms of predictive capacity was stem basal diameter, crown diameter significantly improved the models’ fit, followed by height. Four models were finally chosen, with the best model combining all these variables in the same equation [R2 = 0.930, root mean square error (RMSE) = 0.476]. Selected models performed as well as established global biomass models. Including the individual bioform significantly improved the models’ fit. Main conclusions Stem basal diameter, crown diameter and height measures could be combined to provide robust aboveground biomass (AGB) estimates of individual shrub species. Our study supplements well‐established models developed for trees, allowing more accurate biomass estimation of multistemmed woody individuals. We further provide tools for a methodological standardization of individual biomass quantification in these species. We expect these results contribute to improve the quality of biomass estimates across ecosystems, but also to generate methodological consensus on field biomass assessments in shrubs.
The cranio-mandibular complex is an important structure involved in food capture and processing. Its morphology is related to the nature of the food item. Jaw muscles enable the motion of this complex and their study is essential for functional and evolutionary analysis. The present study compares available behavioral and dietary data obtained from the literature with novel results from functional morphological analyses of the cranio-mandibular complex of the Guira cuckoo (Guira guira) to understand its relationship with the zoophagous trophic habit of this species. The bite force was estimated based on muscle dissections, measurements of the physiological cross-sectional area, and biomechanical modeling of the skull. The results were compared with the available functional morphological data for other birds. The standardized bite force of G. guira is higher than predicted for exclusively zoophagous birds, but lower than for granivorous and/or omnivorous birds. Guira guira possesses the generalized jaw muscular system of neognathous birds, but some features can be related to its trophic habit. The external adductor muscles act mainly during food item processing and multiple aspects of this muscle group are interpreted to increase bite force, that is, their high values of muscle mass, their mechanical advantage (MA), and their perpendicular orientation when the beak is closed. The m. depressor mandibulae and the m. pterygoideus dorsalis et ventralis are interpreted to prioritize speed of action (low MA values), being most important during prey capture. The supposed ecological significance of these traits is the potential to widen the range of prey size that can be processed and the possibility of rapidly capturing agile prey through changes in the leverage of the muscles involved in opening and closing of the bill. This contributes to the trophic versatility of the species and its ability to thrive in different habitats, including urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.