Alzheimer’s disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
ObjectivesIncreased exposure to digital devices as part of online classes increases susceptibility to visual impairments, particularly among school students taught using e-learning strategies. This study aimed to identify the impact of remote learning during the COVID-19 lockdown on children’s visual health.DesignSystematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.Data sourcesScopus, PubMed and ScienceDirect databases from the year 2020 onwards.Eligibility criteriaWe included cross-sectional, case–control, cohort studies, case series and case reports, published in English, Spanish or French, that approached the effects of remote learning during the COVID-19 lockdown on visual health in neurotypical children.Data extraction and synthesisWe included a total of 21 articles with previous quality assessments using the Joanna Briggs checklist. Risk of bias assessment was applied using the National Institutes of Health quality assessment tool for before-and-after studies with no control group; the tool developed by Hoy et al to assess cross-sectional studies; the Murad et al tool to evaluate the methodological quality of case reports and case series; and the Newcastle-Ottawa Scale for cohort studies.ResultsAll but one study reported a deleterious impact of the COVID-19 lockdown on visual health in children. Overall, the most frequently identified ocular effects were refractive errors, accommodation disturbances and visual symptoms such as dry eye and asthenopia.ConclusionsIncreased dependence on digital devices for online classes has either induced or exacerbated visual disturbances, such as rapid progression of myopia, dry eye and visual fatigue symptoms, and vergence and accommodation disturbances, in children who engaged in remote learning during the COVID-19 lockdown.PROSPERO registration numberCRD42022307107.
Taurine is considered the most abundant free amino acid in the brain. Even though there are endogenous mechanisms for taurine production in neural cells, an exogenous supply of taurine is required to meet physiological needs. Taurine is required for optimal postnatal brain development; however, its brain concentration decreases with age. Synthesis of taurine in the central nervous system (CNS) occurs predominantly in astrocytes. A metabolic coupling between astrocytes and neurons has been reported, in which astrocytes provide neurons with hypotaurine as a substrate for taurine production. Taurine has antioxidative, osmoregulatory, and anti-inflammatory functions, among other cytoprotective properties. Astrocytes release taurine as a gliotransmitter, promoting both extracellular and intracellular effects in neurons. The extracellular effects include binding to neuronal GABAA and glycine receptors, with subsequent cellular hyperpolarization, and attenuation of N-methyl-D-aspartic acid (NMDA)-mediated glutamate excitotoxicity. Taurine intracellular effects are directed toward calcium homeostatic pathway, reducing calcium overload and thus preventing excitotoxicity, mitochondrial stress, and apoptosis. However, several physiological aspects of taurine remain unclear, such as the existence or not of a specific taurine receptor. Therefore, further research is needed not only in astrocytes and neurons, but also in other glial cells in order to fully comprehend taurine metabolism and function in the brain. Nonetheless, astrocyte’s role in taurine-induced neuroprotective functions should be considered as a promising therapeutic target of several neuroinflammatory, neurodegenerative and psychiatric diseases in the near future. This review provides an overview of the significant relationship between taurine and astrocytes, as well as its homeostatic and neuroprotective role in the nervous system.
The study aim was to characterize executive function in 114 children with Down syndrome from a reference institution in Bogotá, Colombia. Children were screened with the Battelle Developmental Inventory to establish their developmental age. Eighty children with an equivalent mental age of 2–5.11 years were allocated to groups of 20 according to their mental age. Parents and teachers then completed the Behavior Rating Inventory of Executive Function-Preschool Version. We found a high variability and a low correlation between parent and teacher ratings. In general, children showed a specific profile characterized by weakness in the domains of working memory, shifting, planning, and organization, and strengths in the emotional control domain. These findings indicate a characteristic pattern of executive function in children with Down syndrome. This profile could form the basis for the planning of clinical assessment programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.