Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the initial rate-limiting step in the degradation of the essential amino acid tryptophan along the kynurenine pathway. When discovered more than 50 years ago, IDO1 was thought to be an effector molecule capable of mediating a survival strategy based on the deprivation of bacteria and tumor cells of the essential amino acid tryptophan. Since 1998, when tryptophan catabolism was discovered to be crucially involved in the maintenance of maternal T cell tolerance, IDO1 has become the focus of several laboratories around the world. Indeed, IDO1 is now considered as an authentic immune regulator not only in pregnancy, but also in autoimmune diseases, chronic inflammation, and tumor immunity. However, in the last years, a bulk of new information − including structural, biologic, and functional evidence − on IDO1 has come to light. For instance, we now know that IDO1 has a peculiar conformational plasticity and, in addition to a complex and highly regulated catalytic activity, is capable of performing a nonenzymic function that reprograms the expression profile of immune cells towards a highly immunoregulatory phenotype. With this State-of-the-Art review, we aimed at gathering the most recent information obtained for this eclectic protein as well as at highlighting the major unresolved questions.
Immunoglobulin repertoires contain a fraction of antibodies that recognize low molecular weight compounds, including some enzymes’ cofactors, such as heme. Here, by using a set of 113 samples with variable region sequences matching clinical-stage antibodies, we demonstrated that a considerable number of these antibodies interact with heme. Antibodies that interact with heme possess specific sequence traits of their antigen-binding regions. Moreover they manifest particular physicochemical and functional qualities i.e. increased hydrophobicity, higher propensity of self-binding, higher intrinsic polyreactivity and reduced expression yields. Thus, interaction with heme is a strong predictor of different molecular and functional qualities of antibodies. Notably, these qualities are of high importance for therapeutic antibodies, as their presence was associated with failure of drug candidates to reach clinic. Our study reveled an important facet of information about relationship sequence-function in antibodies. It also offers a convenient tool for detection of liabilities of therapeutic antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.