Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Mutations of Nucleophosmin (NPM1) are the most common genetic abnormalities in adult acute myeloid leukaemia (AML), accounting for about 30% of cases. NPM1-mutated AML has been recognized as distinct entity in the 2017 World Health Organization (WHO) classification of lympho-haematopoietic neoplasms. WHO criteria allow recognition of this leukaemia entity and its distinction from AML with myelodysplasia-related changes, AML with BCR-ABL1 rearrangement and AML with RUNX1 mutations. Nevertheless, controversial issues include the percentage of blasts required for the diagnosis of NPM1-mutated AML and whether cases of NPM1-mutated myelodysplasia and chronic myelomonocytic leukaemia do exist. Evaluation of NPM1 and FLT3 status represents a major pillar of the European LeukemiaNet (ELN) genetic-based risk stratification model. Moreover, NPM1 mutations are particularly suitable for assessing measurable residual disease (MRD) since they are frequent, stable at relapse and do not drive clonal haematopoiesis. Ideally, combining monitoring of MRD with the ELN prognostication model can help to guide therapeutic decisions. Here, we provide examples of instructive cases of NPM1-mutated AML, in order to provide criteria for the appropriate diagnosis and therapy of this frequent leukaemia entity.
Clonal hematopoiesis predisposes to hematologic malignancies. However, clonal hematopoiesis is understudied in classic Hodgkin lymphoma (cHL), a mature B-cell neoplasm exhibiting the most abundant microenvironment. We analyzed clonal hematopoiesis in 40 cHL cases by sequencing microdissected tumor cells and matched normal cells from blood and/or lymph nodes. Five patients had blood and/or tissue clonal hematopoiesis. In three of five patients (all failing first-line therapy), clonal hematopoiesis spread through the tissue microenvironment extensively, and featured mutant DNMT3A R882H , KRAS G60D , and DNMT3A R882H +TET2 Q1274* in 33%, 92%, and 60% of nonneoplastic cells, respectively. In the latter case, DNMT3A/TET2-mutant clonal hematopoiesis seeded the neoplastic clone, which was infected by the Epstein-Barr virus and showed almost no other somatic mutations exome-wide. In the former case, DNMT3A-mutant clonal hematopoiesis did not originate the neoplastic clone despite dominating the blood and B-cell lineage (∼94% leukocytes; ∼96% mature blood B cells), yet led to NPM1-mutated acute myeloid leukemia 6 years after therapy for cHL. Our results expand to cHL the spectrum of hematologic malignancies associated with clonal hematopoiesis.SigNifiCANCe: Clonal hematopoiesis can be present in the cHL tissue, can give rise to the tumor clone, and can spread to large parts of its microenvironment. Even when massive, clonal hematopoiesis does not always give rise to the neoplastic clone of multiple myeloid and lymphoid neoplasms occurring in the same patient. iNtRODUctiON Clonal hematopoiesis of indeterminate potential (CHIP) is promoted by the age-dependent stochastic occurrence of mutations in driver genes (e.g., DNMT3A and TET2) that confer a fitness advantage to hematopoietic stem/progenitor cells (HSPC; ref. 1). CHIP is frequent in the elderly and predisposes to hematopoietic neoplasms mostly of myeloid or T-cell Illustrated by Katie Vicari
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.