We present the target selection for the Breakthrough Listen search for extraterrestrial intelligence during the first year of observations at the Green Bank Telescope, Parkes Telescope and Automated Planet Finder. On the way to observing 1,000,000 nearby stars in search of technological signals, we present three main sets of objects we plan to observe in addition to a smaller sample of exotica.We choose the 60 nearest stars, all within 5.1 pc from the sun. Such nearby stars offer the potential to observe faint radio signals from transmitters having a power similar to those on Earth. We add a list of 1649 stars drawn from the Hipparcos catalog that span the Hertzprung-Russell diagram, including all spectral types along the main sequence, subgiants, and giant stars. This sample offers diversity and inclusion of all stellar types, but with thoughtful limits and due attention to main sequence stars. Our targets also include 123 nearby galaxies composed of a "morphological-type-complete" sample of the nearest spirals, ellipticals, dwarf spherioidals, and irregulars. While their great distances hamper the detection of technological electromagnetic radiation, galaxies offer the opportunity to observe billions of stars simultaneously and to sample the bright end of the technological luminosity function. We will also use the Green Bank and Parkes telescopes to survey the plane and central bulge of the Milky Way. Finally, the complete target list includes several classes of exotica, including white dwarfs, brown dwarfs, black holes, neutron stars, and asteroids in our Solar System.
A line of sight toward the Galactic Center (GC) offers the largest number of potentially habitable systems of any direction in the sky. The Breakthrough Listen program is undertaking the most sensitive and deepest targeted SETI surveys toward the GC. Here, we outline our observing strategies with Robert C. Byrd Green Bank Telescope (GBT) and Parkes telescope to conduct 600 hr of deep observations across 0.7–93 GHz. We report preliminary results from our survey for extraterrestrial intelligence (ETI) beacons across 1–8 GHz with 7.0 and 11.2 hr of observations with Parkes and GBT, respectively. With our narrowband drifting signal search, we were able to place meaningful constraints on ETI transmitters across 1–4 GHz and 3.9–8 GHz with EIRP limits of ≥4 × 1018 W among 60 million stars and ≥5 × 1017 W among half a million stars, respectively. For the first time, we were able to constrain the existence of artificially dispersed transient signals across 3.9–8 GHz with EIRP ≥1 × 1014 W/Hz with a repetition period ≤4.3 hr. We also searched our 11.2 hr of deep observations of the GC and its surrounding region for Fast Radio Burst–like magnetars with the DM up to 5000 pc cm−3 with maximum pulse widths up to 90 ms at 6 GHz. We detected several hundred transient bursts from SGR J1745−2900, but did not detect any new transient bursts with the peak luminosity limit across our observed band of ≥1031 erg s−1 and burst rate of ≥0.23 burst hr−1. These limits are comparable to bright transient emission seen from other Galactic radio-loud magnetars, constraining their presence at the GC.
Breakthrough Listen is the most comprehensive and sensitive search for extraterrestrial intelligence (SETI) to date, employing a collection of international observational facilities including both radio and optical telescopes. During the first three years of the Listen program, thousands of targets have been observed with the Green Bank Telescope (GBT), Parkes Telescope and Automated Planet Finder. At GBT and Parkes, observations have been performed ranging from 700 MHz to 26 GHz, with raw data volumes averaging over 1 PB / day. A pseudo-real time software spectroscopy suite is used to produce multi-resolution spectrograms amounting to approximately 400 GB h −1 GHz −1 beam −1 . For certain targets, raw baseband voltage data is also preserved. Observations with the Automated Planet Finder produce both 2-dimensional and 1-dimensional high resolution (R ∼ 10 5 ) echelle spectral data.Although the primary purpose of Listen data acquisition is for SETI, a range of secondary science has also been performed with these data, including studies of fast radio bursts. Other current and potential research topics include spectral line studies, searches for certain kinds of dark matter, probes of interstellar scattering, pulsar searches, radio transient searches and investigations of stellar activity. Listen data are also being used in the development of algorithms, including machine learning approaches to modulation scheme classification and outlier detection, that have wide applicability not just for astronomical research but for a broad range of science and engineering.In this paper, we describe the hardware and software pipeline used for collection, reduction, archival, and public dissemination of Listen data. We describe the data formats and tools, and present Breakthrough Listen Data Release 1.0 (BLDR 1.0), a defined set of publicly-available raw and reduced data totalling 1 PB.
A radio transmitter which is accelerating with a non-zero radial component with respect to a receiver will produce a signal that appears to change its frequency over time. This effect, commonly produced in astrophysical situations where orbital and rotational motions are ubiquitous, is called a drift rate. In radio SETI (Search for Extraterrestrial Intelligence) research, it is unknown a priori which frequency a signal is being sent at, or even if there will be any drift rate at all besides motions within the solar system. Therefore a range of potential drift rates need to be individually searched, and a maximum drift rate needs to be chosen. The middle of this range is zero, indicating no acceleration, but the absolute value for the limits remains unconstrained. A balance must be struck between computational time and the possibility of excluding a signal from an ETI. In this work, we examine physical considerations that constrain a maximum drift rate and highlight the importance of this problem in any narrowband SETI search. We determine that a normalized drift rate of 200 nHz (eg. 200 Hz/s at 1 GHz) is a generous, physically motivated guideline for the maximum drift rate that should be applied to future narrowband SETI projects if computational capabilities permit.
We report on a search for artificial narrowband signals of 20 stars within the restricted Earth Transit Zone (rETZ) as a part of the ten-year Breakthrough Listen (BL) search for extraterrestrial intelligence (ETI). The rETZ is the region of the sky from which an observer would see Earth transit the Sun with an impact parameter of less than 0.5. This region of the sky is geometrically unique, providing a potential way for an ETI to discover the solar system. The targets were nearby (7–143 pc) and the search covered an electromagnetic frequency range of 3.95–8.00 GHz. We used the Robert C. Byrd Green Bank Telescope to perform these observations with the standard BL data recorder. We searched these data for artificial narrowband (∼Hz) signals with Doppler drift rates of ±20 Hz s−1. We find no evidence for radio technosignatures from ETI in our observations. The observing campaign would have allowed for detections of emissions that were 10−3 to 0.88 times as powerful as the signaling capability of the Arecibo radar transmitter. We conclude that at least 0.6% of the systems in the rETZ within 150 pc do not possess the type of transmitters searched in this survey. To our knowledge, this is the first targeted search for ETI of the rETZ. All data used in this paper are publicly available via the BL Public Data Archive (http://seti.berkeley.edu/bldr2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.