Passive safety systems of cars include parts on the structure that, in the event of an impact, can absorb a large amount of the kinetic energy by deforming and crushing in a design-controlled way. One such energy absorber part, located in the front structure of a Formula Student car, was measured under impact in a test bench. The test is modeled within the Finite Element (FE) framework including the weld characteristics and weld failure description. The continuous welding feature is almost always disregarded in parts included in impact test models. In this work, the FE model is fully defined to reproduce the observed results. The test is used for the qualitative and quantitative validation of the crushing model. On the one hand, the acceleration against time curve is reproduced, and on the other hand, the plying shapes and welding failure observed in the test are also correctly described. Finally, a model that includes additional elements of the car structure is also simulated to verify that the energy absorption system is adequate according to the safety regulations.
Treating specific tissues without affecting other regions is a difficult task. It is desirable to target the particular tissue where the chemical has its biological effect. To study this phenomenon computationally, in this work we numerically study a mathematical model which is written as a nonlinear system composed by three parabolic partial differential equations. The variables involved in the model are the concentration of the chemical, the concentration of the binding protein and the concentration of the chemical bound to the protein. Our aim is to propose a fully discrete approximation of this problem, using the Finite Element Method and a semi-implicit Euler scheme, in order to solve it numerically. This discrete problem is analysed, obtaining a discrete stability property and some a priori error estimates that show the algorithm converges linearly if the continuous solution is regular enough. Also, some representative examples are shown, as well as the numerical verification of the convergence.
In this work, we study, from the numerical point of view, a type III thermoelastic model with double porosity. The thermomechanical problem is written as a linear system composed of hyperbolic partial differential equations for the displacements and the two porosities, and a parabolic partial differential equation for the thermal displacement. An existence and uniqueness result is recalled. Then, we perform its a priori error numerical analysis approximating the resulting variational problem by using the finite element method and the implicit Euler scheme. The linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some numerical simulations are shown to demonstrate the accuracy of the approximations and the dependence of the solution on a coupling coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.