Abstract:In this study some new concepts regarding certain aspects related to shape memory polymers are presented. A blend of polylactic acid (PLA) (80%) and polybutylene succinate (PBS) (20%) was prepared first by extrusion, then by injection molding to obtain the samples. Tensile, stress-relaxation and recovery tests were performed on these samples at 70 °C. The results indicated that the blend can only regain 24% of its initial shape. It was shown that, this partial shape memory effect could be improved by successive cycles of shape memory tests. After a fourth cycle, the blend is able to regain 82% of its shape. These original results indicated that a polymer without (or with partial) shape memory effect may be transformed into a shape memory polymer without any chemical modification. In this work, we have also shown the relationship between shape memory and property memory effect. Mono and multi-frequency DMA (dynamic mechanical analyzer) tests on virgin and 100% recovered samples of polyurethane (PU) revealed that the polymer at the end of the shape memory tests regains 100% of its initial form without regaining some of its physical properties like glass transition temperature, tensile modulus, heat expansion coefficient and free volume fraction. Shape memory (with and without stress-relaxation) tests were performed on the samples in order to show the role of residual stresses during recovery tests. On the basis of the results we have tried to show the origin of the driving force responsible for shape memory effect.
International audienceThis study concerns the effect of thermal aging on mechanical properties of polyurethane. Polyurethane samples were exposed at 85° and 120°C under inert atmosphere. Mechanical tests were carried out on these samples the aging period. Tensile tests were performed to see the effect of aging on elastic modulus (E), stress (σr), and strain (ϵr) at break. It was shown that there are two distinct periods. Due to aging, E and σr increase in the first period, then they decrease in the second period. ϵr decreases first and then increases. Fatigue tests were performed on unaged and aged samples. It was shown that the fatigue behavior of polyurethane (PU) is improved the same way during the first stage of aging. In the second step, the number of cycles to failure increases due to aging. The results show that aging has an important effect on mechanical properties of PU. The strain at break decreases during the first step of aging due to post-cross-linking and then increases due to chain scission in the network. Based on these results, the effect of cross-linking and chain scission on the mechanical properties of PU was discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.