The paper develops a sliding mode controller via nonlinear disturbance observer for diesel engine air path system subject to matched and unmatched disturbances. The proposed controller is based upon a novel nonlinear disturbance observer (NDO) structure which uses the concept of total disturbance estimation in order to estimate simultaneously the matched and the unmatched disturbances in the system. This estimation is then incorporated in a composite controller which alleviates the chattering problem and maintains the nominal performance of the system in the absence of disturbances. Simulations results of the proposed controller on a recently validated experimental air path diesel engine model show that the proposed methods exhibit a better performances comparing to the baseline SMC in terms of reducing chattering and nominal performances recovery.
In this paper, a high-gain interval observer is proposed for a class of partially linear systems affected by unknown but bounded additive disturbances term and measurements noise. The proposed observer is based upon a classical high-gain structure from which an interval observer for the system is designed. The proposed interval observer is designed based on suitable change of coordinates which ensure the cooperativity of the system. To prove the effectiveness of the proposed approach, two numerical examples are provided and the corresponding simulation results are presented.
In this paper, a passive fault tolerant control strategy carried out under the concept of higher order sliding mode control is developed for the diesel engine air path. The proposed fault tolerant strategy incorporates a Super-Twisting algorithm controller which handles parametric uncertainties and actuator faults. In this paper we consider two types of actuator faults, additive and loss-of-effectiveness faults. Theoretical results on the convergence of the proposed controller based on the Lyapunov theory are presented. The simulations of the proposed controller on a recently validated experimental air path diesel engine model show good results under actuator faults conditions even in the presence of parametric uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.