Research data currently face a huge increase of data objects with an increasing variety of types (data types, formats) and variety of workflows by which objects need to be managed across their lifecycle by data infrastructures. Researchers desire to shorten the workflows from data generation to analysis and publication, and the full workflow needs to become transparent to multiple stakeholders, including research administrators and funders. This poses challenges for research infrastructures and user-oriented data services in terms of not only making data and workflows findable, accessible, interoperable and reusable, but also doing so in a way that leverages machine support for better efficiency. One primary need to be addressed is that of findability, and achieving better findability has benefits for other aspects of data and workflow management. In this article, we describe how machine capabilities can be extended to make workflows more findable, in particular by leveraging the Digital Object Architecture, common object operations and machine learning techniques.
Abstract. The need for open science has been recognized by the communities of meteorology and climate science. While these domains are mature in terms of applying digital technologies, the implementation of open science methodologies is less advanced. In a session on “Weather and Climate Science in the Digital Era” at the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Roughly 80 % of the studies presented in the conference session showed the added value of open data and software. These studies included open datasets from disparate sources in their analyses or developed tools and approaches that were made openly available to the research community. Furthermore, shared software is a prerequisite for the studies which presented systems like a model coupling framework or digital collaboration platform. Although these studies showed that sharing code and data is important, the consensus among the participants was that this is not sufficient to achieve open weather and climate science and that there are important issues to address. At the level of technology, the application of the findable, accessible, interoperable, and reusable (FAIR) principles to many datasets used in weather and climate science remains a challenge. This may be due to scalability (in the case of high-resolution climate model data, for example), legal barriers such as those encountered in using weather forecast data, or issues with heterogeneity (for example, when trying to make use of citizen data). In addition, the complexity of current software platforms often limits collaboration between researchers and the optimal use of open science tools and methods. The main challenges we observed, however, were non-technical and impact the practice of science as a whole. There is a need for new roles and responsibilities in the scientific process. People working at the interface of science and digital technology – e.g., data stewards and research software engineers – should collaborate with domain researchers to ensure the optimal use of open science tools and methods. In order to remove legal boundaries on sharing data, non-academic parties such as meteorological institutes should be allowed to act as trusted agents. Besides the creation of these new roles, novel policies regarding open weather and climate science should be developed in an inclusive way in order to engage all stakeholders. Although there is an ongoing debate on open science in the community, the individual aspects are usually discussed in isolation. Our approach in this paper takes the discourse further by focusing on “open science in weather and climate research” as a whole. We consider all aspects of open science and discuss the challenges and opportunities of recent open science developments in data, software, and hardware. We have compiled these into a list of concrete recommendations that could bring us closer to open weather and climate science. We acknowledge that the development of open weather and climate science requires effort to change, but the benefits are large. We have observed these benefits directly in the studies presented in the conference and believe that it leads to much faster progress in understanding our complex world.
Cooperation always contains some control flow. This control flow can be treated by workflow models in order to coordinate actions of a group of distributed participants. While centralized intra-organizational workflow management systems are nowadays very well understood and implemented via tools, the idea of inter-organizational workflow management systems (IOWfMS) still needs conceptual and technical support.This paper discusses the use of agents and multi-agents as underlying concepts of such systems on the basis of agent-and organization-oriented Petri nets. Powerful modeling concepts need appropriate powerful constructs in modeling languages and their tools. As an overall solution we provide Inter-Cloud Workflow Petri Nets (IC-WPN) and sketch their technical embedding. They combine central conceptual ideas of systemswithin-systems models, WfMS, as well as agent and organization theories with technical solutions from agent and Cloud technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.