Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A 2 (sPLA 2 s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA 2 s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of differing phospholipid composition by these enzymes varies by up to 4 orders of magnitude, and yet all enzymes display similar catalytic site specificity toward phospholipids with different polar head groups. Discrimination between sn-2 polyunsaturated versus saturated fatty acyl chains is <6-fold. These enzymes display apparent dissociation constants for activation by calcium in the 1-225 M range, depending on the phospholipid substrate. Analysis of the inhibition by a set of 12 active site-directed, competitive inhibitors reveals a large variation in the potency among the mammalian sPLA 2 s, with Me-Indoxam being the most generally potent sPLA 2 inhibitor. A dramatic correlation exists between the ability of the sPLA 2 s to hydrolyze phosphatidylcholine-rich vesicles efficiently in vitro and the ability to release arachidonic acid when added exogenously to mammalian cells; the group V and X sPLA 2 s are uniquely efficient in this regard.
Mammalian secreted phospholipases A(2) (sPLA2s) comprise a group of at least eight enzymes, including the recently identified group X sPLA2. A bacterial expression system was developed to produce human group X sPLA2 (hGX). Inhibition studies show that the sPLA2 inhibitor LY311727 binds modestly more tightly to human group IIA sPLA2 than to hGX and that a pyrazole-based inhibitor of group IIA sPLA2 is much less active against hGX. The phospholipid head group preference of vesicle-bound hGX was determined. hGX binds tightly to phosphatidylcholine vesicles, which is thought to be required to act efficiently on cells. Tryptophan 67 hGX makes a significant contribution to interfacial binding to zwitterionic vesicles. As little as 10 ng/ml hGX releases arachidonic acid for cyclooxygenase-2- dependent prostaglandin E(2) generation when added exogenously to adherent mammalian cells. In contrast, human group IIA, rat group V, and mouse group IB sPLA2s are virtually inactive at releasing arachidonate when added exogenously to adherent cells. Dislodging cells from the growth surface enhances the ability of all the sPLA2s to release fatty acids. Studies with CHO-K1 cell mutants show that binding of sPLA2s to glycosaminoglycans is not the basis for poor plasma membrane hydrolysis by group IB, IIA, and V sPLA2s.
Mammals contain 9 -10 secreted phospholipases A 2 (sPLA 2 s) that display widely different affinities for membranes, depending on the phospholipid composition. The much higher enzymatic activity of human group X sPLA 2 (hGX) compared with human group IIA sPLA 2 (hGIIA) on phosphatidylcholine (PC)-rich vesicles is due in large part to the higher affinity of the former enzyme for such vesicles; this result also holds when vesicles contain cholesterol and sphingomyelin. The inclusion of anionic phosphatidylserine in PC vesicles dramatically enhances interfacial binding and catalysis of hGIIA but not of hGX. This is the result of the large number of lysine and arginine residues scattered over the entire surface of hGIIA, which cause the enzyme to form a supramolecular aggregate with multiple vesicles. Thus, high affinity binding of hGIIA to anionic vesicles is a complex process and cannot be attributed to a few basic residues on its interfacial binding surface, as is also evident from mutagenesis studies. The main reason hGIIA binds poorly to PC-rich vesicles is that it lacks a tryptophan residue on its interfacial binding surface, a residue that contributes to the high affinity binding of hGX to PC-rich vesicles. Results show that the lag in the onset of hydrolysis of PC vesicles by hGIIA is due in part to the poor affinity of this enzyme for these vesicles. Binding affinity of hGIIA, hGX, and their mutants to PC-rich vesicles is well correlated to the ability of these enzymes to act on the PC-rich outer plasma membrane of mammalian cells.
Secreted phospholipases A2 (sPLA2) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA2s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA2s induced TNF-α and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA2s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA2 (bromophenacyl bromide-inactivated human sPLA2 and the H48Q mutant of the porcine sPLA2) were as effective as the catalytically active sPLA2s in inducing cytokine production. HLM expressed the M-type receptor for sPLA2s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA2 activity as well as binding to the M-type receptor, suppressed sPLA2-induced cytokine production. Incubation of HLM with the sPLA2s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA2s. In conclusion, two distinct sPLA2s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.