Abstract. Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie superalgebra is simple otherwise the quotient of the derived Lie superalgebra modulo center is simple (if its rank is greater than 1). Eleven new exceptional simple modular Lie superalgebras are discovered. Several features of classic notions, or notions themselves, are clarified or introduced, e.g., Cartan matrix, several versions of restrictedness in characteristic 2, Dynkin diagram, Chevalley generators, and even the notion of Lie superalgebra if the characteristic is equal to 2. Interesting phenomena in characteristic 2: (1) all simple Lie superalgebras with Cartan matrix are obtained from simple Lie algebras with Cartan matrix by declaring several (any) of its Chevalley generators odd; (2) there exist simple Lie superalgebras whose even parts are solvable. The Lie superalgebras of fixed points of automorphisms corresponding to the symmetries of Dynkin diagrams are also listed and their simple subquotients described.
Recently, Grozman and Leites returned to the original Cartan's description of Lie algebras to interpret the Melikyan algebras (for p ≤ 5) and several other little-known simple Lie algebras over algebraically closed fields for p = 3 as subalgebras of Lie algebras of vector fields preserving nonintegrable distributions analogous to (or identical with) those preserved by G(2), O(7), Sp(4) and Sp(10). The description was performed in terms of Cartan-Tanaka-Shchepochkina prolongs using Shchepochkina's algorithm and with the help of SuperLie package. Grozman and Leites also found two new series of simple Lie algebras.Here we apply the same method to distributions preserved by one of the two exceptional simple finite dimensional Lie superalgebras over C; for p = 3, we obtain a series of new simple Lie superalgebras and an exceptional one.1991 Mathematics Subject Classification. 17B50, 70F25. Key words and phrases. Cartan prolongation, nonholonomic manifold, Melikyan algebras, Lie superalgebras. We are thankful to P. Grozman and I. Shchepochkina for help; DL is thankful to MPIMiS, Leipzig, for financial support and most creative environment.
For modular Lie superalgebras, new notions are introduced: Divided power homology and divided power cohomology. For illustration, we explicitly give presentations (in terms of analogs of Chevalley generators) of finite dimensional Lie (super)algebras with indecomposable Cartan matrix in characteristic 2 (and -in the arXiv version of the paper -in other characteristics for completeness of the picture). In the modular and super cases, we define notions of Chevalley generators and Cartan matrix, and an auxiliary notion of the Dynkin diagram. The relations of simple Lie algebras of the A, D, E types are not only Serre ones. These non-Serre relations are same for Lie superalgebras with the same Cartan matrix and any distribution of parities of the generators. Presentations of simple orthogonal Lie algebras having no Cartan matrix (indigenous for characteristic 2) are also given.
To D.B. Fuchs on the occasion of his 70th birthday
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.