During the past decades, several methods (e.g., electron microscopy, flow chamber experiments, surface chemical analysis, surface charge and surface hydrophobicity measurements) have been developed to investigate the mechanisms controlling the adhesion of microbial cells to other cells and to various other substrates. However, none of the traditional approaches are capable of looking at adhesion forces at the single-cell level. In recent years, atomic force microscopy (AFM) has been instrumental in measuring the forces driving microbial adhesion on a single-cell basis. The method, known as single-cell force spectroscopy (SCFS), consists of immobilizing a single living cell on an AFM cantilever and measuring the interaction forces between the cellular probe and a solid substrate or another cell. Here we present SCFS protocols that we have developed for quantifying the cell adhesion forces of medically important microbes. Although we focus mainly on the probiotic bacterium Lactobacillus plantarum, we also show that our procedures are applicable to pathogens, such as the bacterium Staphylococcus epidermidis and the yeast Candida albicans. For well-trained microscopists, the entire protocol can be mastered in 1 week.
Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria.
A variety of bacterial pathogens use nanoscale protein fibers called type IV pili to mediate cell adhesion, a primary step leading to infection. Currently, how these nanofibers respond to mechanical stimuli and how this response is used to control adhesion is poorly understood. Here, we use atomic force microscopy techniques to quantify the forces guiding the adhesion of Pseudomonas aeruginosa type IV pili to surfaces. Using chemical force microscopy and single-cell force spectroscopy, we show that pili strongly bind to hydrophobic surfaces in a time-dependent manner, while they weakly bind to hydrophilic surfaces. Individual nanofibers are capable of withstanding forces up to 250 pN, thereby explaining how they can resist mechanical stress. Pulling on individual pili yields constant force plateaus, presumably reflecting conformational changes, as well as nanospring properties that may help bacteria to withstand physiological shear forces. Analysis of mutant strains demonstrates that these mechanical responses originate solely from type IV pili, while flagella and the cell surface localized and proposed pili-associated adhesin PilY1 play no direct role. We also demonstrate that bacterial–host interactions involve constant force plateaus, the extension of bacterial pili, and the formation of membrane tethers from host cells. We postulate that the unique mechanical responses of type IV pili unravelled here enable the bacteria to firmly attach to biotic and abiotic surfaces and thus maintain attachment when subjected to high shear forces under physiological conditions, helping to explain why pili play a critical role in colonization of the host.
SummarySdrG is a cell surface adhesin from Staphylococcus epidermidis which binds to the blood plasma protein fibrinogen (Fg). Ligand binding follows a 'dock, lock and latch' model involving dynamic conformational changes of the adhesin that result in a greatly stabilized adhesin-ligand complex. To date, the force and dynamics of this multistep interaction are poorly understood. Here we use atomic force microscopy (AFM) to unravel the binding strength and cell surface localization of SdrG at molecular resolution. Singlecell force spectroscopy shows that SdrG mediates time-dependent attachment to Fg-coated surfaces. Single-molecule force spectroscopy with Fg-coated AFM tips demonstrates that the adhesin forms nanoscale domains on the cell surface, which we believe contribute to strengthen cell adhesion. Notably, we find that the rupture force of single SdrG-Fg bonds is very large, ∼ 2 nN, equivalent to the strength of a covalent bond, and shows a low dissociation rate, suggesting that the bond is very stable. The strong binding force, slow dissociation and clustering of SdrG provide a molecular foundation for the ability of S. epidermidis to colonize implanted biomaterials and to withstand physiological shear forces.
bThe localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.