We are interested in viscous scalar conservation laws with a white-in-time but spatially correlated stochastic forcing. The equation is assumed to be one-dimensional and periodic in the space variable, and its flux function to be locally Lipschitz continuous and have at most polynomial growth. Neither the flux nor the noise need to be non-degenerate. In a first part, we show the existence and uniqueness of a global solution in a strong sense. In a second part, we establish the existence and uniqueness of an invariant measure for this strong solution.
The aggregation equation is a nonlocal and nonlinear conservation law commonly used to describe the collective motion of individuals interacting together. When interacting potentials are pointy, it is now well established that solutions may blow up in finite time but global in time weak measure valued solutions exist. In this paper we focus on the convergence of particle schemes and finite volume schemes towards these weak measure valued solutions of the aggregation equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.