AbstractPolypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.
AbstractSuperhydrophobic membrane that is highly resistant to wetting by aqueous solution has gained great attention because of its potential to be applied in many emerging membrane processes such as membrane gas absorption (MGA) and membrane distillation (MD). Numerous approaches have been proposed to obtain membranes with superhydrophobic surface from materials with various degrees of hydrophobicity. This paper then reviews the progress in superhydrophobic membrane preparation and its separation properties. A brief description of superhydrophobicity is firstly presented. Preparation methods of the superhydrophobic membrane are subsequently reviewed, including direct processing method and surface modification of the existing membrane. Finally, the separation properties and challenges of superhydrophobic membranes are discussed. This article could provide an insight for further development of superhydrophobic membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.