Systematic reviews and meta-analyses are top of the bill in research. However, the screening phase requires an enormous effort in reading and labeling thousands of papers identified via systematic search. Active learning-aided systematic reviewing offers a solution by combining machine learning algorithms with user input to reduce screening load. This study explores the performance of these algorithms and different ways to apply them. This study is divided into four studies evaluating and improving this active learning pipeline. First, the performance and stability of the active learning pipeline were assessed via simulations and re-analysis of the outcome. Secondly, a convolutional neural network was developed to improve upon available machine learning algorithms. Thirdly, the performance of different algorithm combinations was tested and compared. Finally, algorithm-switching models were built for increased performance. The study concludes with proposals for improving active learning-aided systematic reviews based on combinations of the four studies. It was found that switching models can outperform the currently used models.
It is of utmost importance to provide an overview and strength of evidence of predictive factors and to investigate the current state of affairs on evidence for all published and hypothesized factors that contribute to the onset, relapse, and maintenance of anxiety-, substance use-, and depressive disorders. Thousands of such articles have been published on potential factors of CMDs, yet a clear overview of all preceding factors and interaction between factors is missing. Therefore, the main aim of the current project was to create a database with potentially relevant papers obtained via a systematic. The current paper describes every step of the process of constructing the database, from search query to database. After a broad search and cleaning of the data, we used active learning using a shallow classifier and labeled the first set of papers. Then, we applied a second screening phase in which we switched to a different active learning model (i.e., a neural net) to identify difficult-to-find papers due to concept ambiguity. In the third round of screening, we checked for incorrectly included/excluded papers in a quality assessment procedure resulting in the final database. All scripts, data files, and output files of the software are available via Zenodo (for Github code), the Open Science Framework (for protocols, output), and DANS (for the datasets) and are referred to in the specific sections, thereby making the project fully reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.