Protein phosphatases have both protective and promoting roles in the etiology of diseases. A prominent example is the existence of oncogenic as well as tumor-suppressing protein phosphatases. A few protein phosphatase activity modulators are already applied in therapies. These were however not developed in target-directed approaches, and the recent discovery of phosphatase involvement followed their application in therapy. Nevertheless, these examples demonstrate that small molecules can be generated that modulate the activity of protein phosphatases and are beneficial for the treatment of protein phosphorylation diseases. We describe here strategies for the development of activators and inhibitors of protein phosphatases and clarify some long-standing misconceptions concerning the druggability of these enzymes. Recent developments suggest that it is feasible to design potent and selective protein phosphatase modulators with a therapeutic potential.
RepoMan is a scaffold for signalling by mitotic phosphatases at the chromosomes. During (pro)metaphase, RepoMan-associated protein phosphatases PP1 and PP2A-B56 regulate the chromosome targeting of Aurora-B kinase and RepoMan, respectively. Here we show that this task division is critically dependent on the phosphorylation of RepoMan by protein kinase Cyclin-dependent kinase 1 (Cdk1), which reduces the binding of PP1 but facilitates the recruitment of PP2A-B56. The inactivation of Cdk1 in early anaphase reverses this phosphatase switch, resulting in the accumulation of PP1-RepoMan to a level that is sufficient to catalyse its own chromosome targeting in a PP2A-independent and irreversible manner. Bulk-targeted PP1-RepoMan also inactivates Aurora B and initiates nuclear-envelope reassembly through dephosphorylation-mediated recruitment of Importin β. Bypassing the Cdk1 regulation of PP1-RepoMan causes the premature dephosphorylation of its mitotic-exit substrates in prometaphase. Hence, the regulation of RepoMan-associated phosphatases by Cdk1 is essential for the timely dephosphorylation of their mitotic substrates.
Ki-67 and RepoMan have key roles during mitotic exit. Previously, we showed that Ki-67 organizes the mitotic chromosome periphery and recruits protein phosphatase 1 (PP1) to chromatin at anaphase onset, in a similar manner as RepoMan (Booth et al., 2014). Here we show how Ki-67 and RepoMan form mitotic exit phosphatases by recruiting PP1, how they distinguish between distinct PP1 isoforms and how the assembly of these two holoenzymes are dynamically regulated by Aurora B kinase during mitosis. Unexpectedly, our data also reveal that Ki-67 and RepoMan bind PP1 using an identical, yet novel mechanism, interacting with a PP1 pocket that is engaged only by these two PP1 regulators. These findings not only show how two distinct mitotic exit phosphatases are recruited to their substrates, but also provide immediate opportunities for the design of novel cancer therapeutics that selectively target the Ki-67:PP1 and RepoMan:PP1 holoenzymes.DOI: http://dx.doi.org/10.7554/eLife.16539.001
The biotin identification (BioID) protocol uses a mutant of the biotin ligase BirA (BirA*) fused to a protein-of-interest to biotinylate proximate proteins in intact cells. Here, we show that two inactive halves of BirA* separately fused to a catalytic and regulatory subunit of protein phosphatase PP1 reconstitute a functional BirA* enzyme upon heterodimerization of the phosphatase subunits. We also demonstrate that this BirA* fragment complementation approach, termed split-BioID, can be used to screen for substrates and other protein interactors of PP1 holoenzymes. Split-BioID is a novel and versatile tool for the identification of (transient) interactors of protein dimers.
Two studies extended psychometric research on the Student-Teacher Relationship Scale (STRS) with kindergarten and preschool children (N 1 5 60-71; N 2 5 35) and their teachers. These studies used a multi-method approach to replicate and extend previous findings concerning the convergent validity of the STRS Closeness, Conflict, and Dependency scale and to further examine the discriminant validity of the STRS. Study 1 investigated convergence between the STRS scales and childand peer-reports of the same constructs based on a multi-trait multi-method approach. Study 2 examined the pattern of associations between the STRS and indicators of teacher-child relationship quality rated by external observers. Support was found for the convergent validity and to a lesser extent the discriminant validity of the STRS Closeness and Conflict scale. For the STRS Dependency scale, additional research remains necessary.In the past decade, researchers have consistently reported an association between the quality of teacher-child relationships and children's early academic and socioemotional development (Pianta, Hamre, & Stuhlman, 2003). Research has revealed, for example, an association between teacher-child relationships and current and future academic skills (e.g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.