The aim of this study was to characterize the specifics of the sprint technique during the transition from start block into sprint running in well-trained sprinters. Twenty-one sprinters (11 men and 10 women), equipped with 74 spherical reflective markers, executed an explosive start action. An opto-electronic motion analysis system consisting of 12 MX3 cameras (250 Hz; 325,000 pixels) and two Kistler force plates (1000 Hz) was used to collect the three-dimensional (3D) marker trajectories and ground reaction forces (Nexus, Vicon). The 3D kinematics, joint kinetics, and power were calculated (Opensim) and were time normalized to 100% from the first action after gunshot until the end of second stance after block clearance (Matlab). The results showed that during the first stance, power generation at the knee plays a significant role in obtaining an effective transition, representing 31% of power generation in the lower limb, in the absence of preceding power absorption. Furthermore, the sprinter actively searches a more forward leaning position to maximize horizontal velocity. Since success during sprinting from the second stance onwards involves high hip and ankle activation, the above-mentioned three characteristics are specific skills required to successfully conclude the transition from start block into sprint running.
We investigated the interaction between step length and step rate and its effect on sprint performance in male and female sprinters during initial acceleration (IA) (0-10 m), transition phase (TP) (10-30 m), and at maximal speed (MS). Ten high-level male and female sprinters ran 2 all-out 60-m sprints. Force-time characteristics of start action were recorded by means of instrumented starting blocks. Running speed and acceleration were recorded using a laser system (ULS), whereas step length and step rate were measured for each step (Optojump). Step length was normalized for leg length. Explosive strength of the lower limb muscles was quantified using vertical jump performance, showing a 24.6% higher score in men compared with women. During the 3 phases of sprinting, step rate remained constant and did not differ significantly between men (IA: 4.37 ± 0.21 Hz, TP: 4.47 ± 0.25 Hz, MS: 4.43 ± 0.18 Hz) and women (IA: 4.23 ± 0.18 Hz, TP: 4.34 ± 0.18 Hz, MS: 4.28 ± 0.17 Hz). The data analysis indicates that step characteristics interact differently in men and women across phases. Men do not take full advantage of their higher explosive strength to develop step length and speed during IA, because normalized step length differed only slightly (-4.09%) between men (1.70 ± 0.21) and women (1.66 ± 0.13). However, men outscored women clearly in acceleration (+34.5%) during the TP because they were capable of developing higher step lengths (2.04 ± 0.12 m in men vs. 1.85 ± 0.07 m in women), even when normalized for leg length (2.65 ± 0.12 in men vs. 2.47 ± 0.22 in women). At MS, it was concluded that men and women pursue an optimal balance between step rate and step length because a high negative correlation was found in both sexes (r = -0.94 and r = -0.77). Therefore, training approach needs to be customized to gender-related differences in step length-rate interaction.
The aim of this study was to relate the contribution of lower limb joint moments and individual muscle forces to the body centre of mass (COM) vertical and horizontal acceleration during the initial two steps of sprint running. Start performance of seven well-trained sprinters was recorded using an optoelectronic motion analysis system and two force plates. Participant-specific torque-driven and muscle-driven simulations were conducted in OpenSim to quantify, respectively, the contributions of the individual joints and muscles to body propulsion and lift. The ankle is the major contributor to both actions during the first two stances, with an even larger contribution in the second compared to the first stance. Biarticular gastrocnemius is the main muscle contributor to propulsion in the second stance. The contribution of the hip and knee depends highly on the position of the athlete: During the first stance, where the athlete runs in a forward bending position, the knee contributes primarily to body lift and the hip contributes to propulsion and body lift. In conclusion, a small increase in ankle power generation seems to affect the body COM acceleration, whereas increases in hip and knee power generation tend to affect acceleration less.
The aim of this study was to examine the physical characteristics and somatotype of junior and senior athletes in relation to sprint start and acceleration performance. Nineteen female junior, 23 male junior, 9 female senior, and 16 male senior sprint athletes performed three maximal 20-m sprints. The starting blocks were instrumented to measure forward propulsion forces. Running velocity was measured by a laser positioned behind the athlete at 1 m height. Anthropometric measures were used to calculate somatotype and skeletal muscle mass. Body composition was estimated by underwater weighing densitometry. Junior and senior athletes were of similar height in both sexes. Male seniors were heavier, had larger limb circumferences, and a higher skeletal muscle mass than male juniors. Only the limb circumferences of the female seniors were larger than those of the female juniors. Female juniors were balanced ectomorphs, while female seniors were situated centrally on the somatochart (2.7Á2.2Á3.9 vs. 2.6Á3.1Á3.1; P 00.772, 0.047, and 0.066 respectively). Male juniors were mesomorphic ectomorphs, while male seniors were ectomorphic mesomorphs (1.8Á3.3Á3.6 vs. 1.6Á4.2Á2.8; P 00.148, 0.002, and 0.002 respectively). All sprint starts were similar for the junior and senior athletes of both sexes. Senior athletes accelerated more than the junior athletes, which resulted in higher running velocities after 5 m (senior vs. junior: females, 5.5190.32 vs. 6.0190.27 m × s Á1 , P 00.001; males, 5.8590.38 vs. 6.1390.44 m × s Á1 , P 00.043). The greater muscularity of senior compared with junior athletes did not result in better sprint start dynamics, but they did accelerate more and ran faster. These results show that late-adolescent boys in particular are still developing their muscularity. The technical complexity of the sprint start and the negative influence of a higher body mass may partly explain the comparable sprint start dynamics of the junior and senior athletes. We suggest that strength training should be combined with sufficient attention to technical skills to allow a positive transfer.
The aim of this study was to investigate differences in joint power generation between well-trained adult athletes and young sprinters from block clearance to initial contact of second stance. Eleven under 16 (U16) and 18 under 18 (U18) promising sprinters executed an explosive start action. Fourteen well-trained adult sprinters completed the exact same protocol. All athletes were equipped with 74 spherical reflective markers, while an opto-electronic motion analysis system consisting of 12 infrared cameras (250 Hz, MX3, Vicon, Oxford Metrics, UK) and 2 Kistler force plates (1,000 Hz) was used to collect the three-dimensional marker trajectories and ground reaction forces (Nexus, Vicon). Three-dimensional kinematics, kinetics, and power were calculated (Opensim) and time normalised from the first action after gunshot until initial contact of second stance after block clearance. This study showed that adult athletes rely on higher knee power generation during the first stance to induce longer step length and therefore higher velocity. In younger athletes, power generation of hip was more dominant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.