SUMMARYWe present a method to reduce mesh bias in dynamic fracture simulations using the finite element method with adaptive insertion of extrinsic cohesive zone elements along element boundaries. The geometry of the domain discretization is important in this setting because cracks are only allowed to propagate along element facets and can potentially bias the crack paths. To reduce mesh bias, we consider unstructured polygonal finite elements in this work. The meshes are generated with centroidal Voronoi tessellations to ensure element quality. However, the possible crack directions at each node are limited, making this discretization a poor candidate for dynamic fracture simulation. To overcome this problem, and significantly improve crack patterns, we propose adaptive element splitting, whereby the number of potential crack directions is increased at each crack tip. Thus, the crack is allowed to propagate through the polygonal element. Geometric studies illustrate the benefits of polygonal element discretizations employed with element splitting over other structured and unstructured discretizations for crack propagation applications. Numerical examples are performed and demonstrate good agreement with previous experimental and numerical results in the literature.
Nonlinear problems are prevalent in structural and continuum mechanics, and there is high demand for computational tools to solve these problems. Despite efforts to develop efficient and effective algorithms, one single algorithm may not be capable of solving any and all nonlinear problems. A brief review of recent nonlinear solution techniques is first presented. Emphasis, however, is placed on the review of load, displacement, arc length, work, generalized displacement, and orthogonal residual control algorithms, which are unified into a single framework. Each of these solution schemes differs in the use of a constraint equation for the incremental-iterative procedure. The governing finite element equations and constraint equation for each solution scheme are combined into a single matrix equation, which characterizes the unified approach. This conceptual model leads naturally to an effective object-oriented implementation. Within the unified framework, the strengths and weaknesses of the various solution schemes are examined through numerical examples. [DOI: 10.1115/1.4006992]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.