Several pathological processes, such as sepsis and inflammatory bowel disease (IBD), are associated with impairment of intestinal epithelial barrier. Here, we investigated the role of matrix metalloproteinase MMP13 in these diseases. We observed that MMP13−/− mice display a strong protection in LPS- and caecal ligation and puncture-induced sepsis. We could attribute this protection to reduced LPS-induced goblet cell depletion, endoplasmic reticulum stress, permeability and tight junction destabilization in the gut of MMP13−/− mice compared to MMP13+/+ mice. Both in vitro and in vivo, we found that MMP13 is able to cleave pro-TNF into bioactive TNF. By LC-MS/MS, we identified three MMP13 cleavage sites, which proves that MMP13 is an alternative TNF sheddase next to the TNF converting enzyme TACE. Similarly, we found that the same mechanism was responsible for the observed protection of the MMP13−/− mice in a mouse model of DSS-induced colitis. We identified MMP13 as an important mediator in sepsis and IBD via the shedding of TNF. Hence, we propose MMP13 as a novel drug target for diseases in which damage to the gut is essential.
Tumor necrosis factor (TNF) is a powerful activator of the immune system and a well-validated target for treatment of autoimmune diseases. Injection of TNF induces systemic lethal inflammation characterized by hypothermia, induction of multiple cytokines, and extensive damage to multiple organs. Previously, we reported that TNF-induced lethal inflammation is strictly TNFR1(P55)-dependent. We also uncovered a crucial role for P55 expression levels in intestinal epithelial cells (IECs), in which P55+/+ expression is sufficient to sensitize to TNF lethality in an otherwise fully protected P55+/- background. Here, we investigated the molecular mechanism that drives TNF toxicity in IECs. Unexpectedly, we found that the degree of TNF-induced enterocyte damage and apoptosis in IECs is equally strong in TNF-sensitive P55+/+ mice and TNF-resistant P55+/- mice. Our results suggest that P55+/+-induced signaling causes goblet and Paneth cell dysfunction, leading to severe epithelial barrier dysfunction. As a result, intestinal permeability and systemic bacterial spread are induced, causing lethal systemic inflammation. In conclusion, we identified P55-induced goblet and Paneth cell dysfunction as a crucial mechanism for TNF-induced systemic and lethal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.