Secondary ligand–metal interactions are decisive in many catalytic transformations. While arene–gold interactions have repeatedly been reported as critical structural feature in many high‐performance gold catalysts, we herein report that these interactions can also be replaced by Au⋅⋅⋅H−C hydrogen bonds without suffering any reduction in catalytic performance. Systematic experimental and computational studies on a series of ylide‐substituted phosphines featuring either a PPh3 (PhYPhos) or PCy3 (CyYPhos) moiety showed that the arene‐gold interaction in the aryl‐substituted compounds is efficiently compensated by the formation of Au⋅⋅⋅H−C hydrogen bonds. The strongest interaction is found with the C−H moiety next to the onium center, which due to the polarization results in remarkably strong interactions with the shortest Au⋅⋅⋅H−C hydrogen bonds reported to date. Calorimetric studies on the formation of the gold complexes further confirmed that the PhYPhos and CyYPhos ligands form similarly stable complexes. Consequently, both ligands showed the same catalytic performance in the hydroamination, hydrophenoxylation and hydrocarboxylation of alkynes, thus demonstrating that Au⋅⋅⋅H−C hydrogen bonds are equally suited for the generation of highly effective gold catalysts than gold‐arene interactions. The generality of this observation was confirmed by a comparative study between a biaryl phosphine ligand and its cyclohexyl‐substituted derivative, which again showed identical catalytic performance. These observations clearly support Au⋅⋅⋅H−C hydrogen bonds as fundamental secondary interactions in gold catalysts, thus further increasing the number of design elements that can be used for future catalyst construction.
In recent years, several classes of new N-heterocyclic carbene (NHC) ligands were developed around the concept of “flexible steric bulk”. The steric hindrance of these ligands brings stability to the active species, while ligand flexibility still allows for the approach of the substrate. In this review, the synthesis of several types of new classes, such as IBiox, cyclic alkyl amino carbenes (CAAC), ITent, and IPr* are discussed, as well as how they move the state-of-the-art in palladium catalyzed cross-coupling forward.
The synthesis and characterization of novel palladium complexes bearing N-heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo [5.3.2.1] tridecane (CAP) are reported. These organometallic complexes can be easily obtained using two different synthetic...
A stable periodic mesoporous organosilica (PMO) with accessible sulfonic acid functionalities is prepared via a one-pot-synthesis and is used as solid support for highly active catalysts, consisting of gold(I)-N-heterocyclic carbene (NHC) complexes. The gold complexes are successfully immobilized on the nanoporous hybrid material via a straightforward acid-base reaction with the corresponding [Au(OH)(NHC)] synthon. This catalyst design strategy results in a boomerang-type catalyst, allowing the active species to detach from the surface to perform the catalysis and then to recombine with the solid after all the starting material is consumed. This boomerang behavior is assessed in the hydration of alkynes. The tested catalysts were found to be active in the latter reaction, and after an acidic work-up, the IPr*-based gold catalyst can be recovered and then reused several times without any loss in efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.