Dose integration properties were investigated for normoxic polymer gels based on methacrylic acid (nMAG) and acrylamide/N, N'-methylenebisacrylamide (nPAG). The effect of sequential irradiation was studied for different fractionation schemes and varying amounts of methacrylic acid for the nMAG gels. Magnetic resonance imaging (MRI) was used for read out of the absorbed dose response. The investigated gels exhibited a dependence on the fractionation scheme. The response when the total dose was divided into fractions of 0.5 Gy was compared with the response when the total dose was delivered in a single fraction. The slope of the R2 versus the absorbed dose response decreased when the absorbed dose per fraction was increased. Also, for higher amounts of methacrylic acid in the nMAG system the difference in the response increased. For gels containing 2, 4, 6 and 8% methacrylic acid, the R2 versus the absorbed dose response increased by 35, 37, 63 and 93%, respectively. Furthermore, the effect of the fractionation was larger when a higher total absorbed dose was given. The effect was less pronounced for the investigated nPAG, containing 3% acrylamide and 3% N, N'-methylenebisacrylamide, than for the nMAG systems. Consequently, this study indicates that the nPAG system has preferable beam integration characteristics compared with the nMAG system.
High expression of metastasis-associated protein 1 co-regulator (MTA1), a component of the nuclear remodelling and histone deacetylase complex, has been associated with human tumours. However, the precise role of MTA1 in tumorigenesis remains unknown. In this study, we show that induced levels of MTA1 are sufficient to transform Rat1 fibroblasts and that the transforming potential of MTA1 is dependent on its acetylation at Lys 626. Underlying mechanisms of MTA1-mediated transformation include activation of the Ras-Raf pathway by MTA1 but not by acetylation-inactive MTA1; this was due to the repression of Gai2 transcription, which negatively influences Ras activation. We observed that acetylated MTA1-histone deacetylase (HDAC) interaction was required for the recruitment of the MTA1-HDAC complex to the Gai2 regulatory element and consequently for the repression of Gai2 transcription and expression leading to activation of the Ras-Raf pathway. The findings presented in this study provide for the first time-to the best of our knowledgeevidence of acetylation-dependent oncogenic activity of a cancer-relevant gene product.
Basal cell carcinoma cells show low proliferation rates at the invasive front and a concordant upregulation of the cdk-inhibitor p16, limiting proliferative capacity. Little is known about the mechanisms of p16 regulation in normal and malignant cells apart from that many transcription factors such as Ets1, Ets2, SP1, SP3, JunB and the polycomb protein Bmi1 have the potential to induce or repress p16 expression. Therefore, the aim of this study was to determine how p16 is regulated in basal cell carcinoma with special focus on its upregulation in invasive cells. By analysing various microdissected areas of basal cell carcinoma using real-time quantitative PCR we observed upregulation of p16 mRNA in invasive tumour cells compared to centrally localized tumour cells. The methylation status of the p16 promoter, analysed by methylation-specific PCR, also showed diminished methylation in tumour cells at the invasive front, supporting the hypothesis that promoter methylation can affect the transcriptional activation of p16 in vivo. There was only sporadic co-localization of Ets, or ERK1/2 phosphorylation with p16 upregulation at the invasive front, suggesting that these factors were not directly involved in the regulation of p16. Furthermore, the gamma 2 chain of laminin-332 has been reported to be increased at the invasive front compared to the central areas of many tumours. Interestingly, in basal cell carcinoma we observed partial co-localization between p16 and the gamma 2 chain of laminin-332 in tumour cells towards areas of ulceration and in the majority of clearly infiltrative tumour cells but not in p16 positive tumour cells with a more pushing invasive growth pattern. These data suggest that concurrent p16 upregulation and decreased proliferation are more general phenomena in different types of invasive growth patterns in basal cell carcinomas and that these only partially overlap with the gamma 2 chain of laminin-332 associated invasion patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.