Trophoblasts, placental cells of epithelial lineage, undergo extensive differentiation to form the cellular components of the placenta. Trophoblast progenitor cell differentiation into the multinucleated syncytiotrophoblast is a key developmental process required for placental function, where defects in syncytiotrophoblast formation and turnover associate with placental pathologies and link to poor pregnancy outcomes. The cellular and molecular processes governing syncytiotrophoblast formation are poorly understood, but require the activation of pathways that direct cell fusion. The protease, A Disintegrin and Metalloproteinase 12 (ADAM12), controls cell fusion in myoblasts and is highly expressed in the placenta localizing to multiple trophoblast populations. However, the importance of ADAM12 in regulating trophoblast fusion is unknown. Here, we describe a function for ADAM12 in regulating trophoblast fusion. Using two distinct trophoblast models of cell fusion, we show that ADAM12 is dynamically upregulated and is under the transcriptional control of protein kinase A. siRNA-directed loss of ADAM12 impedes spontaneous fusion of primary cytotrophoblasts, whereas overexpression of the secreted variant, ADAM12S, potentiates cell fusion in the Bewo trophoblast cell line. Mechanistically, both ectopic and endogenous levels of ADAM12 were shown to control trophoblast fusion through E-cadherin ectodomain shedding and remodeling of intercellular boundaries. This study describes a novel role for ADAM12 in placental development, specifically highlighting its importance in controlling the differentiation of villous cytotrophoblasts into multinucleated cellular structures. Moreover, this work identifies E-cadherin as a novel ADAM12 substrate, and highlights the significance that cell adhesion molecule ectodomain shedding has in normal development. Cell Death and Differentiation (2015) 22, 1970-1984 doi:10.1038/cdd.2015 published online 24 April 2015 In mammalian development, the placenta forms the mechanical and physiological link between maternal and fetal circulations. In rodents and higher order primates, including humans, this transfer is achieved through extensive uterine infiltration by fetal-derived cells of epithelial lineage called trophoblasts.1 Trophoblast differentiation is essential for optimal placental function, where the underlying molecular processes regulating specific functions of distinct trophoblast populations are strictly controlled. Defects in trophoblast differentiation associate with impaired placental function and directly impact fetal and maternal health. Within the placenta, progenitor trophoblasts (also called villous cytotrophoblasts; vCTs) overlie a well-defined basal lamina forming an organized, mitotically active epithelial layer. vCT differentiation into an overlying multinucleated structure called the syncytiotrophoblast (synCT) is a key event in placental development. 3 The synCT, composed of millions of nuclei sharing one common cytoplasm, directs nutrient and gas exchange between m...
During pregnancy, stromal- and vascular-remodeling trophoblasts serve critical roles in directing placental development acquiring pro-invasive characteristics. The A Disintegrin and Metalloproteinase (ADAM) family of multifunctional proteins direct cellular processes across multiple organ systems via their intrinsic catalytic, cell adhesive and intracellular signaling properties. ADAM12, existing as two distinct splice variants (ADAM12L and ADAM12S), is highly expressed in the human placenta and promotes cell migration and invasion in several tumor cell lines; however, its role in trophoblast biology is unknown. In this study, ADAM12 was localized to anchoring trophoblast columns in first trimester placentas and to highly invasive extracellular matrix-degrading trophoblasts in placental villous explants. The importance of ADAM12 in directing trophoblast invasion was tested using loss-of and gain-of-function strategies, where siRNA-directed knockdown of ADAM12 inhibited trophoblast cell invasion while over-expression promoted migration and invasion in two trophoblastic cell models. In placental villous explant cultures, siRNA-directed loss of ADAM12 significantly dampened trophoblast column outgrowth. Additionally, we provide functional evidence for the ADAM12S variant in promoting trophoblast invasion and column outgrowth through a mechanism requiring its catalytic activity. This is the first study to assign a function for ADAM12 in trophoblast biology, where ADAM12 may play a central role regulating the behavior of invasive trophoblast subsets in early pregnancy. This study also underlines the importance of ADAM12L and ADAM12S in directing cell motility in normal developmental processes outside of cancer, specifically highlighting a potentially important function of ADAM12S in directing early placental development.
In pregnancy, uterine natural killer cells (uNK) play essential roles in coordinating uterine angiogenesis, blood vessel remodeling and promoting maternal tolerance to fetal tissue. Deviances from a normal uterine microenvironment are thought to modify uNK function(s) by limiting their ability to establish a healthy pregnancy. While maternal obesity has become a major health concern due to associations with adverse effects on fetal and maternal health, our understanding into how obesity contributes to poor pregnancy disorders is unknown. Given the importance of uNK in pregnancy, this study examines the impact of obesity on uNK function in women in early pregnancy. We identify that uNK from obese women show a greater propensity for cellular activation, but this difference does not translate into increased effector killing potential. Instead, uNK from obese women express an altered repertoire of natural killer receptors, including an imbalance in inhibitory KIR2DL1 and activating KIR2DS1 receptors that favors HLA-C2-directed uNK activation. Notably, we show that obesity-related KIR2DS1 skewing potentiates TNFα production upon receptor crosslinking. Together, these findings suggest that maternal obesity modifies uNK activity by altering the response toward HLA-C2 antigen and KIR2DL1/2DS1-controlled TNFα release. Furthermore, this work identifies alterations in uNK function resulting from maternal obesity that may impact early developmental processes important in pregnancy health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.