The subglacial processes of abrasion and quarrying are thought to be primarily responsible for bedrock erosion by glaciers. While theory points to sliding speed as the dominant control on abrasion, rates of quarrying are likely scaled by a more complex combination of sliding speed, effective pressure, bed roughness, and short‐term water‐pressure fluctuations. Here we pair a model for quarrying based on statistical characterization of bedrock strength with a model for subglacial hydrology that describes the temporal evolution of cavities under the influence of variations in sliding speed and effective pressure. Using a finite element model, we simulate the evolution of the hydrological system at the base of a glacier and compute rates of abrasion and quarrying. Cavity lengths and channel cross sections evolve through time, causing temporal shifts in ice‐bed contact area, which in turn govern the differential stress that influences erosion over the course of a year. Our results demonstrate how variations in meltwater production amplify rates of subglacial erosion relative to the case of steady meltwater generation. The level of amplification depends on how the variations control the ice‐bed contact area. Seasonal variations are most effective in boosting mean rates of basal sliding and hence subglacial abrasion, whereas shorter‐term variations (monthly‐weekly) most strongly influence rates of subglacial quarrying through temporal amplification of differential bedrock stress around cavities. This influence of transient hydrology on subglacial erosion processes may explain why glaciers in temperate climates with strong variations in temperature and precipitation erode faster than similar‐type glaciers in polar environments.
Quarrying of bedrock is a primary agent of subglacial erosion. Although the mechanical theory behind the process has been studied for decades, it has proven difficult to formulate the governing principles so that large‐scale landscape evolution models can be used to integrate erosion over time. The existing mechanical theory thus stands largely untested in its ability to explain postglacial topography. In this study we relate the physics of quarrying to long‐term landscape evolution with a multiscale approach that connects meter‐scale cavities to kilometer‐scale glacial landscapes. By averaging the quarrying rate across many small‐scale bedrock steps, we quantify how regional trends in basal sliding speed, effective pressure, and bed slope affect the rate of erosion. A sensitivity test indicates that a power law formulated in terms of these three variables provides an acceptable basis for quantifying regional‐scale rates of quarrying. Our results highlight the strong influence of effective pressure, which intensifies quarrying by increasing the volume of the bed that is stressed by the ice and thereby the probability of rock failure. The resulting pressure dependency points to subglacial hydrology as a primary factor for influencing rates of quarrying and hence for shaping the bedrock topography under warm‐based glaciers. When applied in a landscape evolution model, the erosion law for quarrying produces recognizable large‐scale glacial landforms: U‐shaped valleys, hanging valleys, and overdeepenings. The landforms produced are very similar to those predicted by more standard sliding‐based erosion laws, but overall quarrying is more focused in valleys, and less effective at higher elevations.
Abstract. Shear stress at the base of glaciers exerts a significant control on basal sliding and hence also glacial erosion in arctic and high-altitude areas. However, the inaccessible nature of glacial beds complicates empirical studies of basal shear stress, and little is therefore known of its spatial and temporal distribution.In this study we seek to improve our understanding of basal shear stress using a higher-order numerical ice model (iSOSIA). In order to test the validity of the higher-order model, we first compare the detailed distribution of basal shear stress in iSOSIA and in a three-dimensional full-Stokes model (Elmer/Ice). We find that iSOSIA and Elmer/Ice predict similar first-order stress and velocity patterns, and that differences are restricted to local variations at length scales of the order of the grid resolution. In addition, we find that subglacial shear stress is relatively uniform and insensitive to subtle changes in local topographic relief.Following the initial comparison studies, we use iSOSIA to investigate changes in basal shear stress as a result of landscape evolution by glacial erosion. The experiments with landscape evolution show that subglacial shear stress decreases as glacial erosion transforms preglacial V-shaped valleys into U-shaped troughs. These findings support the hypothesis that glacial erosion is most efficient in the early stages of glacial landscape development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.