The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Paper in pressVandendriessche S., Messiaen M., O'Flynn S., Vincx M., Degraer S.Hiding and feeding in floating seaweed: floating seaweed clumps as possible refuges or feeding grounds for fishes ABSTRACTFloating seaweed is considered to be an important habitat for juvenile fishes due to the provision of food, shelter, a visual orientation point and passive transport. The importance of the presence of the highly dynamical seaweed clumps from the North Sea to juvenile neustonic fishes was investigated by analysing both neuston samples (without seaweed) and seaweed samples concerning fish community structure, and length-frequency distributions and feeding habits of five associated fish species. While the neustonic fish community was mainly seasonally structured, the seaweedassociated fish community was more complex: the response of the associated fish species to environmental variables was species specific and probably influenced by species interactions, resulting in a large multivariate distance between the samples dominated by Chelon labrosus and the samples dominated by Cyclopterus lumpus, Trachurus trachurus and Ciliata mustela. The results of the stomach analysis confirmed that C. lumpus is a weedpatch specialist that has a close spatial affinity with the seaweed and feeds intensively on the seaweed-associated invertebrate fauna. Similarly, C. mustela juveniles also fed on the seaweed fauna, but in a more opportunistic way. The shape of the size-frequency distribution suggested enhanced growth when associated with floating seaweed.Chelon labrosus and T. trachurus juveniles were generally large in seaweed samples, but large individuals were also encountered in the neuston. The proportion of associated invertebrate fauna in their diet was of minor importance, compared to the proportions in C. lumpus. Individuals of Syngnathus rostellatus mainly fed on planktonic invertebrates but had a discontinuous size-frequency distribution, suggesting that some of the syngnathids were carried with the seaweed upon detachment and stayed associated. Floating seaweeds can therefore be regarded as ephemeral habitats shared between several fish species (mainly juveniles) that use them for different reasons and with varying intensity.
The species composition of macrofauna associated with floating seaweed rafts is highly variable and influenced by many factors like spatial and temporal variation, period since detachment and probably also the seaweed species. The presence of seaweed preferences was assessed by a combination of in situ seaweed samplings and multiplechoice aquarium experiments in a controlled environment, using the seaweedassociated grazing organisms Idotea baltica and Gammarus crinicornis. Results from sampling data confirm that the seaweed composition has an effect on macrofaunal species composition and abundance: samples dominated by Sargassum muticum displayed higher densities but lower diversities compared to samples dominated by Ascophyllum nodosum and Fucus vesiculosus. Seaweed preference was also apparent from the multiple choice experiments, but did not exactly match the results of the community analysis: (1) I. baltica had high densities in seaweed samples dominated by F. vesiculosus and A. nodosum, while in the experiments this isopod was most frequently associated with Enteromorpha sp. and F. vesiculosus, and fed mostly on S. muticum, A. nodosum and Enteromorpha sp.; (2) G. crinicornis had high densities in seaweed samples dominated by F. vesiculosus, while in the experiments this amphipod was most frequently associated with S. muticum, but fed most on A. nodosum and F. vesiculosus. It is clear from the laboratory experiments that preference for habitat (shelter) and food can differ among seaweed species. However, food and habitat preferences are hard to assess because grazer preference may change if choices are increased or decreased, if different sizes of grazers are used, or if predators or other grazers are added to the experiments. Effects of seaweed composition may also be blurred due to the obligate opportunistic nature of a lot of the associated macrofaunal species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.