Automatically delineating the deep and superficial aponeurosis of the skeletal muscles from ultrasound images is important in many aspects of the clinical routine. In particular, finding muscle parameters, such as thickness, fascicle length or pennation angle, is a time-consuming clinical task requiring both human labour and specialised knowledge. In this study, a multi-step solution for automating these tasks is presented. A process to effortlessly extract the aponeurosis for automatically measuring the muscle thickness has been introduced as a first step. This process consists mainly of three parts. In the first part, the Attention UNet has been incorporated to automatically delineate the boundaries of the studied muscles. Afterwards, a specialised post-processing algorithm was utilised to improve (and correct) the segmentation results. Lastly, the calculation of the muscle thickness was performed. The proposed method has achieved similar to a human-level performance. In particular, the overall discrepancy between the automatic and the manual muscle thickness measurements was equal to 0.4 mm, a significant result that demonstrates the feasibility of automating this task. In the second step of the proposed methodology, the fascicle’s length and pennation angle are extracted through an unsupervised pipeline. Initially, filtering is applied to the ultrasound images to further distinguish the tissues from the other muscle structures. Later, the well-known K-Means algorithm is used to isolate them successfully. As the last step, the dominant angle of the segmented muscle tissues is reported and compared with manual measurements. The proposed pipeline is showing very promising results in the evaluated dataset. Specifically, in the calculation of the pennation angle, the overall discrepancy between the automatic and the manual measurements was less than 2.22° (degrees), once more comparable with the human-level performance. Finally, regarding the fascicle length measurements, the results were divided based on the muscle properties. In the muscles where a large portion (or all) of the fascicles are located between the upper and lower aponeuroses, the proposed pipeline exhibits superb performance; otherwise, overall accuracy deteriorates due to errors caused by the trigonometric approximations needed for the length calculation.
Automatically measuring a muscle’s cross-sectional area is an important application in clinical practice that has been studied extensively in recent years for its ability to assess muscle architecture. Additionally, an adequately segmented cross-sectional area can be used to estimate the echogenicity of the muscle, another valuable parameter correlated with muscle quality. This study assesses state-of-the-art convolutional neural networks and vision transformers for automating this task in a new, large, and diverse database. This database consists of 2005 transverse ultrasound images from four informative muscles for neuromuscular disorders, recorded from 210 subjects of different ages, pathological conditions, and sexes. Regarding the reported results, all of the evaluated deep learning models have achieved near-to-human-level performance. In particular, the manual vs. the automatic measurements of the cross-sectional area exhibit an average discrepancy of less than 38.15 mm2, a significant result demonstrating the feasibility of automating this task. Moreover, the difference in muscle echogenicity estimated from these two readings is only 0.88, another indicator of the proposed method’s success. Furthermore, Bland–Altman analysis of the measurements exhibits no systematic errors since most differences fall between the 95% limits of agreements and the two readings have a 0.97 Pearson’s correlation coefficient (p < 0.001, validation set) with ICC (2, 1) surpassing 0.97, showing the reliability of this approach. Finally, as a supplementary analysis, the texture of the muscle’s visible cross-sectional area was examined using deep learning to investigate whether a classification between healthy subjects and patients with pathological conditions solely from the muscle texture is possible. Our preliminary results indicate that such a task is feasible, but further and more extensive studies are required for more conclusive results.
The recent advances in deep learning have revolutionised computer-aided diagnosis in medical imaging. However, deep learning approaches to unveil their full potential require significant amounts of data, which can be a challenging task in some scientific fields, such as musculoskeletal ultrasound imaging, in which data privacy and security reasons can lead to important limitations in the acquisition and the distribution process of patients’ data. For this reason, different generative methods have been introduced to significantly reduce the required amount of real data by generating synthetic images, almost indistinguishable from the real ones. In this study, the power of the diffusion models is incorporated for the generation of realistic data from a small set of musculoskeletal ultrasound images in four different muscles. Afterwards, the similarity of the generated and real images is assessed with different types of qualitative and quantitative metrics that correspond well with human judgement. In particular, the histograms of pixel intensities of the two sets of images have demonstrated that the two distributions are statistically similar. Additionally, the well-established LPIPS, SSIM, FID, and PSNR metrics have been used to quantify the similarity of these sets of images. The two sets of images have achieved extremely high similarity scores in all these metrics. Subsequently, high-level features are extracted from the two types of images and visualized in a two-dimensional space for inspection of their structure and to identify patterns. From this representation, the two sets of images are hard to distinguish. Finally, we perform a series of experiments to assess the impact of the generated data for training a highly efficient Attention-UNet for the important clinical application of muscle thickness measurement. Our results depict that the synthetic data play a significant role in the model’s final performance and can lead to the improvement of the deep learning systems in musculoskeletal ultrasound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.