Abstract. Active faults are those faults on which movement is possible in the future. This draws particular attention to active faults in geodynamic studies and seismic hazard assessment. Here, we present a high-detail continental-scale geodatabase: The Active Faults of Eurasia Database (AFEAD). It comprises 48 205 objects stored in shapefile format with spatial detail sufficient for a 1 : 1 000 000 map scale. The fault sense, a rank of confidence in activity, a rank of slip rate, and a reference to source publications are provided for each database entry. Where possible, this information is supplemented by a fault name, fault zone name, abbreviated fault parameters (e.g., slip rate, age of the last motion, and total offset), and text information from the sources. The database was collected from 612 published sources, including regional maps, databases, and research papers. AFEAD facilitates a spatial search for local studies. It provides sufficient detail for planning a study of a particular fault system and guides deeper bibliographical investigations. This scenario is particularly significant for vast central and northern Asian areas, where most studies are available only in Russian and hard copy. Moreover, the database model provides the basis for regional- and continental-scale integrative studies based on geographic information systems (GISs). The database is available at https://doi.org/10.13140/RG.2.2.25509.58084 (Bachmanov et al., 2022) and via web map at http://neotec.ginras.ru/index/mapbox/database_map.html (last access: 5 May 2022). Database representations and supplementary data are hosted at http://neotec.ginras.ru/index/english/database_eng.html (last access: 5 May 2022).
Abstract. Active faults are those faults on which movement is possible in the future. It draws particular attention to active faults in geodynamic studies and seismic hazard assessment. Here we present a high-detail continental-scale geodatabase: The Active Faults of Eurasia Database (AFEAD). It comprises 46,775 objects stored in the shapefile format with spatial detail sufficient for a map of scale 1:1M. Fault sense, a rank of confidence in activity, a rank of slip rate, and a reference to source publications are provided for each database entry. Where possible, it is supplemented with a fault name, fault zone name, abbreviated fault parameters (e.g., slip rate, age of the last motion, total offset), and text information from the sources. The database was collected from 612 sources, including regional maps, databases, and research papers. AFEAD facilitates a spatial search for local studies. It provides sufficient detail for planning a study of a particular fault system and guides deeper bibliographical investigations if needed. This scenario is particularly significant for vast Central and North Asia areas, where most studies are available only in Russian and hardcopy. Moreover, the database model provides the basis for GIS-based regional and continental-scale integrative studies. The database is available at https://doi.org/10.13140/RG.2.2.10333.74726 and via web map at http://neotec.ginras.ru/index/mapbox/database_map.html (last access: July 30, 2021). Some database representations with supplementary data are hosted at http://neotec.ginras.ru/index/english/database_eng.html.
The article is focused on the possibility of implementing ecosystem services (ES) in water management system of Russia. Examples of international practice ES-oriented water use policy are reviewed. Modern structure of water use system in Russia is presented. The main environmental problems of Russia in connection with ES according to Common international classification of ecosystem services (CICES) are summarized. As a result, the authors propose a roadmap for reforming water use based on ES in order to improve water management. Key positions of possibility way of development Russia's water use system are highlighted and recommendations are given due to sustainable development goals.
The paper presents the results of remote sensing interpretation of active faults of the Sredinny Range of Kamchatka. The use of remote sensing data allowed us to identify fault scarps and magma-conducting fractures, expressed in the topography by chains of eruption centers. Most of the detected faults are located on volcanic plateaus, what indicates the relation of faulting with thinning of the brittle crust under the volcanic belt, similar to the faults of the Eastern Volcanic Belt. The geometrical characteristics of the most preserved scarps provide an estimate of the magnitude of paleoearthquakes Mw = 5.8±0.2, which significantly exceeds the historical seismicity. The identified faults are located above the northern edge of the subducted portion of the Pacific plate and form a zone oblique to the axis of the Kuril-Kamchatka island-arc system. The strike and normal sense of the faults are consistent with the transverse extension in Kamchatka. These new data provide the northern and western boundaries of the above-subduction extensional setting in Kamchatka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.